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a b s t r a c t 

Background and objective: In-laboratory overnight polysomnography (PSG) is the gold standard method to 

diagnose the Sleep Apnoea-Hypopnoea Syndrome (SAHS). PSG is a complex, expensive, labour-intensive 

and time-consuming test. Consequently, simplified diagnostic methods are desirable. We propose the 

analysis of the airflow (AF) signal by means of recurrence plots (RP) features. The main goal of our study 

was to evaluate the utility of the information from RPs of the AF signals to detect paediatric SAHS at 

different levels of severity. In addition, we also evaluated the complementarity with the 3% oxygen de- 

saturation index ( ODI 3 ). 

Methods: 946 AF and blood oxygen saturation (SpO 2 ) recordings from children ages 0–13 years were 

used. The population under study was randomly split into training (60%) and test (40%) sets. RP was com- 

puted and 9 RP features were extracted from each AF recording. ODI 3 was also calculated from each SpO 2 

recording. A feature selection stage was conducted in the training group by means of the fast correlation- 

based filter (FCBF) methodology to obtain a relevant and non-redundant optimum feature subset. A multi- 

layer perceptron neural network with Bayesian approach (BY-MLP), trained with these optimum features, 

was used to estimate the apnoea–hypopnoea index (AHI). 

Results: 8 of the RP features showed statistically significant differences ( p -value < 0.01) among the SAHS 

severity groups. FCBF selected the maximum length of the diagonal lines from RP, as well as the ODI 3 . 

Using these optimum features, the BY-MLP model achieved 83.2%, 78.5%, and 91.0% accuracy in the test 

group for the AHI thresholds 1, 5, and 10 events/h, respectively. Moreover, this model reached a negative 

likelihood ratio of 0.1 for 1 event/h and a positive likelihood ratio of 13.7 for 10 events/h. 

Conclusions: RP analysis enables extraction of useful SAHS-related information from overnight AF pae- 

diatric recordings. Moreover, it provides complementary information to the widely-used clinical variable 

ODI 3 . Thus, RP applied to AF signals can be used along with ODI 3 to help in paediatric SAHS diagnosis, 

particularly to either confirm the absence of SAHS or the presence of severe SAHS. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Childhood Sleep Apnoea-Hypopnoea Syndrome (SAHS) is a

reathing disorder characterized by recurrent airflow cessa-

ion (apnoeas) and/or significant airflow-reduction (hypopnoeas)

pisodes during sleep [1,2] . In spite of its high prevalence (1–4%

f all children) [3] , paediatric SAHS is an underdiagnosed disease
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hose adverse consequences include cognitive, behavioural,

etabolic, and cardiovascular functions [3] . Early detection and

reatment of the affected children is therefore of paramount

mportance. 

In-laboratory overnight polysomnography (PSG) is the gold

tandard for paediatric SAHS diagnosis [4] . Paediatric PSG is per-

ormed in a sleep laboratory, suitable for children, and consists in

ecording a wide range of biomedical signals. Qualified medical

ersonnel identifies and quantifies the severity of SAHS by means

f these recordings. However, PSG is a complex, labour-intensive,

nd expensive test [5] . It is also time-consuming and both the
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facilities and the expertise needed to carry it out are not always

available, which entails prolonged access delays [5] . Moreover, the

multifarious sensors placed on child’s body make PSG a particu-

larly ill-at-ease test for some, leading to undesirable percentages

of failed testing opportunities [6] . 

In order to deal with the inherent limitations of PSG, alternative

simplified methods have been explored. The analysis of a reduced

signal set, such as electrocardiogram (ECG), photoplethysmography

(PPG), blood oxygen saturation (SpO 2 ), and airflow (AF), is a

commonly used approach [7–14] . Several studies have analysed

these signals through temporal and/or spectral analysis techniques,

to assist in paediatric SAHS diagnosis [8–14] . 

In this study, we propose and have analysed the AF signal to

help in paediatric SAHS diagnosis. In addition, 3% oxygen desatu-

ration index ( ODI 3 ), a conventional oximetry index commonly used

in the SAHS context [11,15,16] , has been also obtained. Despite its

widespread use, the extant literature indicates that ODI 3 , which

is obtained from SpO 2 , underestimates both SAHS presence and

severity [15,17] . Therefore, only using this index is insufficient to

accurately simplify diagnosis. In this regard, the analysis of AF is

a natural way of simplifying PSG, since the apnoeic events modify

the amplitude of this signal [18] . Moreover, recent studies have

already shown the usefulness of AF in diagnosing paediatric SAHS

[13,14] . 

Based on the aforementioned considerations, our proposal is

based on the use of non-linear recurrence plots (RPs) analysis

to obtain useful features from AF [19] . The respiratory system is

dynamic, non-linear, and non-stationary, which may lead to the

presence of recurrences within a given state space [20,21] . Recur-

rence is a property of dynamic systems which refers to a point or

state that occurs repeatedly throughout a given time series [19,20] .

Therefore, RP analysis allows visualization of the recurrences of

the phase-space states of a signal [19] . The occurrence of apnoeic

events produces changes in the dynamics of the system, altering

the amount and distribution of the recurrences in the RP [20] .

Hence, RP analysis can provide information about these changes,

even though the signals are non-stationary [20] . However, we are

unaware of any studies characterizing paediatric SAHS by means

of RP obtained from PSG signals. The properties of RP may further

help to characterize the presence and severity of paediatric SAHS

in AF recordings while overcoming some limitations of traditional

Fourier-based analyses. The previous success of RP in character-

izing other biomedical signals also supports its application to AF

in SAHS context. It has been successfully used to automatically

identify epileptic EEG signals [22] , to monitor anaesthesia by EEG

recordings [23] , as well as to improve the diagnostic ability of ECG

to detect SAHS in adults [20,24] . 

Hence, we hypothesized that the analysis of the RP applied to

AF signals may be useful to obtain paediatric SAHS-related infor-

mation. Accordingly, our main objective is to evaluate the utility

of this information to detect SAHS at different severity degrees.

Furthermore, its complementarity with ODI 3 is also addressed in

our study. 

2. Subjects and signals under study 

In this study, AF and SpO 2 signals were recorded from 946

children referred to the Paediatric Sleep Unit at the Comer Chil-

dren’s Hospital of the University of Chicago, due to clinical SAHS

suspicion. The Ethics Committee of the Hospital approved the

study protocol. An informed consent was obtained from the legal

caretakers of all children. 

The subjects were diagnosed by specialised physicians ac-

cording to the rules of the American Academy of Sleep Medicine

(AASM) [18] . The apnoea–hypopnoea index (AHI), computed as

the number of apnoea and hypopnoea events per hour (e/h)
f sleep, was used to establish SAHS and its severity [18,25] .

ommon AHI thresholds of 1, 5, and 10 e/h were used to classify

aediatric subjects into four SAHS-severity degrees [10,14,26–29] :

o-SAHS (AHI < 1 e/h), mild (1 e/h ≤ AHI < 5 e/h), moderate

5 e/h ≤ AHI < 10 e/h), and severe SAHS (AHI ≥ 10 e/h). Hence,

ur database was divided according to these thresholds. 

The subjects were randomly split into a training set (60%) and a

est set (40%). Table 1 shows the clinical and demographic data of

he population under study. No statistically significant differences

 p -value > 0.01) were found in age, gender, body mass index (BMI),

nd AHI between the training and test sets, after applying the

hi-square and the Mann–Whitney tests. 

Table 1 

Demographic and clinical data from the paediatric subjects under study. Data are 

presented as median [interquartile range] or n (%); BMI: body mass index; AHI: 

apnoea–hypopnoea index. 

All Training group Test group p -value 

Subjects ( n ) 946 570 376 –

Age (years) 6 [6] 6 [5] 6 [6] 0.9063 

Males ( n ) 584 (61.73%) 339 (59.47%) 245 (65.16%) 0.0875 

BMI (kg/m 

2 ) 17.92 [6.17] 17.72 [6.74] 18.07 [6.01] 0.9610 

AHI (e/h) 3.82 [7.80] 4.17 [8.34] 3.33 [6.44] 0.0340 

AHI ≥ 1 (e/h) 783 (82.77%) 479 (84.04%) 304 (80.85%) 0.2185 

AHI ≥ 5 (e/h) 397 (41.97%) 256 (44.91%) 141 (37.50%) 0.0263 

AHI ≥ 10 (e/h) 225 (23.78%) 145 (25.44%) 80 (21.28%) 0.1601 

PSG was conducted using a digital polysomnography sys-

em (Polysmith, Nihon Kohden America Inc., Irvine, CA, USA).

ingle-channel AF and SpO 2 signals were acquired during the

SG. Recordings lasting less than 3 h were discarded [11] . The AF

ecordings, obtained with a thermistor, were sampled at 100 Hz

18] . These were normalised according to Varady et al. [30] , to

inimize possible differences in AF caused by age. AF artefacts

ere removed by comparing statistical measures of 30-s epochs

31] . The SpO 2 recordings, sampled at 25 Hz, were used to obtain

DI 3 . Their artefacts were removed by discarding SpO 2 values

 50% and changes with a slope ≥4%/s [16] . Fig. 1 (a) shows an

xample of the AF signal and Fig. 1 (b) shows the corresponding

pO 2 signal. We can see 7 apnoea events (absence of AF, i.e., near

ero amplitude) in 0.4, 0.9, 1.7, 2.6, 4.9, 5.4, and 6.3 min, and the

orresponding desaturations. 

. Methods 

ODI 3 was obtained from SpO 2 recordings according to Taha

t al. [32] . Therefore, oxygen desaturation events were scored as

 decrease ≥3% of SpO 2 at a rate of 0.1–4%/s, during 10–60 s.

he number of desaturation events was divided by the number of

ecording hours to obtain ODI 3 . 

Afterwards, a four-stage study was carried out: (i) computation

f RP from AF, (ii) RP feature extraction, (iii) feature selection

hrough the fast correlation-based filter (FCBF) method, and (iv)

HI estimation using a multi-layer perceptron neural network

ith Bayesian training approach (BY-MLP). Fig. 2 shows the block

iagram of the method proposed in our study. 

.1. Recurrence plot computation 

In the present context, recurrences are points or states that

ccur repeatedly. RPs are analytical tools for visualizing such recur-

ences and discovering hidden periodicities of dynamic systems,

.e., systems that evolve over time, like a physiological time series

19] . Since a dynamic system is defined by vectors representing

rajectories in the m -dimensional phase-space, a RP is the graphic

epresentation of the binary and symmetric recurrence matrix R i,j ,
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Fig. 1. Normal breathing pattern followed by apnoeic events in (a) airflow signal (AF) and (b) corresponding blood oxygen saturation signal (SpO 2 ). 

Fig. 2. Block diagram of the proposed method. AHI: apnoea–hypopnoea index. 
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hose values are 1 if two trajectories are roughly equal (there is a

ecurrence) and 0 otherwise [19,20] . 

Dealing with discrete measurements, the first step towards

btaining an RP is to reconstruct the phase-space using the

ell-known Taken’s time-delay method [19,20,33] : 

  i = [ u (i ) , u (i + τ ) , ..., u (i + (m − 1) · τ ) ] , (1) 

here u ( i ) is the value of the time series at time i, m is the embed-

ing dimension, and τ is the time delay. The embedded dimension

 m ) and the time delay ( τ ) are parameters to be optimized in each

ontext. The time delay has to be adjusted to not set up auto-

orrelated state vectors [20,24] , with the auto-mutual information
AMI) function being commonly used for this purpose [19,20,34] .

he embedding dimension must also be carefully selected, since

n undue increase of m removes the isolated recurrences from the

P and increases the occurrence of spurious diagonal structures

19] . In this regard, the false nearest neighbour’s (FNN) method

as been successfully used to optimize m [19,34,35] . 

Once the phase-space has been reconstructed, the distance

atrix, D i,j , is calculated by the commonly used Euclidean distance

orm [19,20] : 

 i, j = 

∥∥�
 x i − �

 x j 
∥∥, (2) 

here i, j = 1,…, L -( m -1) ·τ and L is the time series length. 

Afterwards, R i,j is calculated through the Heaviside function,

eing R i,j = 1 (i.e., there is a recurrence) if the distance is less than

 certain threshold, ε, and R i,j = 0 otherwise [19] : 

 i, j = 

{
1 : D i, j ≤ ε 
0 : D i, j > ε 

. (3) 

A proper selection of ε is essential too. If ε is too small, no

ecurrences will be shown in the RP and no information could be

erived about the dynamic of the system [19] . By contrast, if ε
s too large, almost all the points will be considered recurrences,

eading to the appearance of many artefacts [19] . The fixed dis-

ance method, which fixes the threshold according to the standard

eviation ( σ ) of each time series, has been widely used to select

[20,34] . 

Finally, the RP is obtained by plotting the recurrence matrix. 

.2. Feature extraction: recurrence plot analysis 

A RP always has a main diagonal, i.e., line of identity (LOI),

ith respect to which the RP is symmetric. As shown in Fig. 3 ,

solated recurrences, vertical (i.e., laminar segments), and diagonal

i.e., deterministic segments) structures can be found in a typical

P. There are several features that quantify these RP structures,

nown as recurrence quantification analysis (RQA) [19,20] : 
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• Features based on the recurrence density of the RP: 

– Recurrence rate ( REC ): it quantifies the percentage of recur-

rences of RP, including isolated recurrences and recurrences

that form deterministic and laminar segments (see Fig. 3 ),

providing information about the variability of time series

[19,36] . The more recurrences there are, the less variable the

time series is [20] : 

REC = 

1 

N 

2 

N ∑ 

i, j=1 

R i, j , (4)

where N is the number of rows in R i,j . 

• Features based on diagonal structures of the RP: 

– Determinism ( DET ): DET is the proportion of recurrences

forming diagonal lines, i.e., forming deterministic segments

(see Fig. 3 ) [24,36] . This feature measures the determinism

(predictability) of time series [19,20] . Thereby, longer diag-

onal lines and fewer isolated recurrences (high DET ) imply

more predictability of the time series [19] : 

DET = 

∑ N 
l= l min 

l · p(l) ∑ N 
l=1 l · p(l) 

, (5)

where l min is the minimum length to consider a diagonal

line and p ( l ) is the histogram of diagonal lines of length

l . In our work, we define the value l min as 2, which is the

most commonly used [20,34] . 

– Average diagonal line length ( LEN ): LEN provides informa-

tion about the average time that allows to predict the future

trajectory of a dynamic system from the knowledge of its

initial state (i.e., prediction time of a time series) [19,20,22] :

LEN = 

∑ N 
l= l min 

l · p(l) ∑ N 
l= l min 

p(l) 
. (6)

This feature can be observed in Fig. 3 . 

– Maximum length of the diagonal lines ( Lmax ): it measures

the exponential divergence of the phase-space trajectory

[19,20] . The faster the trajectory segments diverges, the

shorter the diagonal lines [19] : 

L max = max ( l i , i = 1 , ..., N) . (7)

This feature can be observed in Fig. 3 . 

– Shannon’s entropy of the length distribution of the diagonal

lines ( ENTR ): ENTR measures the complexity of the RP

from its diagonal structures, i.e., regarding its deterministic

segments [21,22] . Lower ENTR values indicate that the RP is

less complex in respect of its diagonal lines [19] . 

ENT R = −
N ∑ 

l= l min 

p(l) · log (p(l)) . (8)

– Trend ( TREND ): it is the distribution of recurrences with re-

spect to the LOI [19,36] . TREND reflects the non-stationarity

of a signal [21,36] . Therefore, recurrences homogenously

distributed (| TREND| close to zero) indicate a high level of

stationarity in the signal [21] : 

T RE ND = 

∑ ˜ N 
i =1 

(
i −

(
˜ N / 2 

))
· ( RE C i − 〈 RE C i 〉 ) ∑ ˜ N 

i =1 

(
i −

(
˜ N / 2 

))2 
, (9)

where ˜ N is a number smaller than N to exclude the edges

[19,36] , REC i is the number of recurrences in the diagonal

lines with distance i to the LOI, and 〈 REC i 〉 is the average of

REC i . We define ̃  N as N −2, which is a commonly used value

[19,36] . This feature can be observed in Fig. 3 . 

o

• Features based on vertical structures of RP: 

– Laminarity ( LAM ): LAM is the proportion of recurrences

forming vertical lines, i.e., forming laminar segments (see

Fig. 3 ) [22,24] . It represents the occurrence of laminar states

in the RP, measuring the probability that a state does not

change with time [19,34] . Higher LAM values indicate that

states do not change or change slowly, resulting in less

complexity [20] : 

LAM = 

∑ N 
v = v min 

v · p(v ) ∑ N 
v =1 v · p(v ) 

, (10)

where v min is the minimum length to consider a vertical

line and p ( v ) is the histogram of vertical lines of length v .

We define the value v min as 2, which is the most commonly

used value [19,20,34] . 

– Average vertical line length (trapping time, TT ): TT estimates

the average time that a system remains in a particular state

[19,22,24] . The lower its value, the more complex the

system is, as it stays briefly in a similar state [20] : 

T T = 

∑ N 
v = v min 

v · p(v ) ∑ N 
v = v min 

p(v ) 
. (11)

This feature can be observed in Fig. 3 . 

– Maximum length of vertical lines ( Vmax ): it gives informa-

tion about the duration of the laminar states and the com-

plexity of the signal [19,20] . The higher Vmax values are, the

less complexity in the time series [20] : 

V max = max ( v i , i = 1 , ..., N) . (12)

This feature can be observed in Fig. 3 . 

Fig. 3. Example of typical structures and features of a RP. 

.3. Feature selection: fast correlation-based filter 

FCBF has proven its utility in a wide range of biomedical-

elated variable selection problems [37–39] , including SAHS

ontext [10,15,40] . Based on the symmetric uncertainty ( SU ), FCBF

orts the features in descending order of relevance (descending

U ) and discards those of less relevance that are redundant [37] .

ence, an optimal subset of relevant and non-redundant features

s obtained in order to maximise the diagnostic potential of the

xtracted information [37] . 

A bootstrapping methodology, with 10 0 0 bootstrap replicates,

as used during this stage to compose a more generalizable

ptimum feature subset [41] . FCBF was applied to each replicate

nd those features selected at least 50% of the times formed our

ptimum feature subset [10,15] . 
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.4. Apnoea–hypopnoea index estimation: multi-layer perceptron 

eural network with Bayesian approach 

MLP is an artificial neural network typically configured in 3

ayers (input, hidden, and output layer) [10,15,42] . Each layer is

omposed of mathematical units called perceptrons, and each per-

eptron is connected to all perceptrons of the next layer [42] . There

re as many inputs as variables in the feature space. The number

f hidden layer perceptrons ( N H ) is a hyper-parameter that must

e optimized. In the present study, the output layer has one single

erceptron to provide the estimated AHI, since this is a continuous

ariable. In order to optimize the weights and biases associated to

he connections of the MLP, a Bayesian approach has been used in

his study due to its previous success in the SAHS context [15,43] . 

.5. Statistical analysis 

The RP features from AF did not pass the Lilliefors nor-

ality test. Therefore, the non-parametric Mann–Whitney and

ruskal–Wallis tests were used to evaluate statistically significant

ifferences ( p -value < 0.01 after Bonferroni corrections for multiple

omparisons) between the SAHS severity groups. Boxplots were

sed to show potential differences in RP features according to

he degree of SAHS severity. Cohen’s kappa (kappa) was used to

easure the agreement between the actual diagnosis and the

ne derived from BY-MLP [44] . Regarding diagnostic performance

f the BY-MLP, standard metrics were computed: sensitivity (Se:

roportion of subjects with SAHS rightly classified), specificity (Sp:

roportion of subjects without the disease rightly classified), accu-

acy (Acc: proportion of overall subjects rightly classified), positive

PPV: proportion of positive test result which are true positives)

nd negative (NPV: proportion of negative test result which are

rue negatives) predictive values, positive (LR + : proportion of sub-

ects with SAHS rightly classified with respect to the proportion of

ealthy subjects wrongly classified) and negative (LR −: proportion
ig. 4. Averaged RP of the four SAHS severity groups in the training set: (a) no-S

imensional phase-space are vectors that define the dynamic behaviour of AF. Havin

00 Hz the sampling frequency and 30-s the window size, Eq. (1) allow to define th

  2820 = [ u (2820) , u (2910) , u (30 0 0)] . 
f subjects with SAHS wrongly classified with respect to the

ealthy subjects rightly classified) likelihood ratios [45,46] . Three

ptimum thresholds were used to evaluate the actual diagnostic

bility of ODI 3 for AHI cut-off points 1, 5, and 10 e/h in the

est group. Each optimum threshold was obtained as the closest

oint to [1,0] (100% Se and 100% Sp) of the receiver-operating

haracteristic (ROC) curve from the training group [46] . 

. Results 

.1. Training group 

AMI was used in the training group to optimize τ in the

hase-space reconstruction of AF signals. The τ was varied from

.1 to 6 s. The optimum τ value (first relative minimum of AMI)

as obtained for each subject of the training group. The median of

hese values determined the optimum τ for AF: τ = 0.9 s. Regard-

ng the optimum m value, FNN was used to obtain the minimum

imension where the number of false nearest neighbours is re-

uced to zero. The m was varied from 1 to 20 and FNN determined

he adequate dimensional space for AF: m = 3. Additionally, the

hreshold ε was varied from (10 −2 ·σ ) to (25 ·10 −2 ·σ ) to optimise

ts value. The ε was fixed to ε = 10 −2 ·σ since RP features obtained

ith this threshold had the highest average Spearman’s correlation

oefficient (RHO) with the AHI in the training group. 

.1.1. Exploratory analysis 

Since apnoeic events last at least 2 respiratory cycles [18] , the

F signal of each subject was segmented into 30-s windows as

 trade-off between ensuring that it is broad enough to include

pnoeic events and these are a significant proportion of the infor-

ation within each segment. RP of each subject was computed by

veraging the recurrence points of RPs obtained for each window

19] . Moreover, Fig. 4 illustrates the averaged RPs in each out of the
AHS, (b) mild, (c) moderate, and (d) severe SAHS. The trajectories of the m - 

g optimized the parameters dimension m = 3 and delay τ = 0.9 s, and being 

e phase-space trajectories of airflow recordings as � x 1 = [ u (1) , u (91) , u (181)] to 
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Fig. 5. Boxplots of the scaled RP features extracted from AF signals from the training set: determinism ( DET ), Shannon’s entropy of the length distribution of the diagonal 

lines ( ENTR ), laminarity ( LAM ), mean length of the diagonal lines ( LEN ), maximum length of the diagonal lines ( Lmax ), recurrence rate ( REC ), trend ( TREND ), mean length of 

the vertical lines ( TT ), and maximum length of the vertical lines ( Vmax ). 
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T  
four SAHS severity groups of the training group, with tones closer

to red highlighting the presence of more recurrences. According

to this figure, fading of recurrences towards the upper left and

lower right corners is shown in RPs as darker blue tone regions.

A slower fading and a higher occurrence of diagonal and vertical

structures can be observed when AHI is higher. The combination

of these structures formed clusters of recurrences close to the LOI,

whose thickness is greater as SAHS severity increases. 

Fig. 5 shows the boxplots of the scaled RP features of the four

SAHS severity groups in the training set. An increasing LAM, LEN,

Lmax, ENTR, REC, TT , and Vmax tendency and a decreasing TREND

tendency can be observed as AHI is higher. All RP features but DET

showed significant differences ( p -value < 0.01) among the SAHS

severity groups. The same features presented significant differ-

ences ( p -value < 0.01) between the severe SAHS group and the

remaining ones. Additionally, LAM and Lmax showed significant

differences between the no-SAHS and moderate SAHS groups, and

between mild and moderate SAHS groups, respectively. 

4.1.2. Optimum feature subset 

Nine RP features from AF were obtained in the extraction

stage. These features formed the FCBF algorithm input, which

only selected Lmax more than 50% of the times (923 times).

When ODI 3 was incorporated to the selection process, the FCBF

chose Lmax (778 times) and ODI 3 (10 0 0 times), highlighting its

complementarity. 

4.1.3. Multi-layer perceptron neural network with Bayesian approach: 

model optimisation and training 

Two BY-MLP models were designed and trained using the

corresponding selected features (BY-MLP AF : Lmax ; BY-MLP AF, ODI3 :

Lmax and ODI 3 ). The N H of these BY-MLP were varied from 1 to 30

to optimise its value. For each N H , kappa was obtained through a

leave-one-out cross-validation procedure in the training group and

averaged for 10 runs to minimise the random initialization effect

of the BY-MLP. The optimum N H was 17 for BY-MLP AF and 16 for

BY-MLP AF, ODI3 , since they reached the highest kappa. The optimum

N H and feature subset were used to obtain the final models of

BY-MLP AF and BY-MLP AF, ODI3 using the whole training group. 
.2. Test group 

Table 2 shows the diagnostic performance of BY-MLP AF and

Y-MLP AF, ODI3 models and single ODI 3 , evaluated in the test group

AHI thresholds 1, 5, and 10 e/h). As expected, ODI 3 obtained

ower Se in 1 and 5 e/h, underestimating the SAHS presence and

greeing with the literature [15,17] . The BY-MLP AF achieved mod-

rate diagnostic performance, outperforming single ODI 3 in several

etrics. The combination of both approaches (BY-MLP AF, ODI3 ) out-

erformed BY-MLP AF and single ODI 3 in most of the performance

etrics for the three common AHI thresholds, highlighting higher

ccuracies in 1 e/h and 10 e/h thresholds, as well as a LR − value

f 0.1 for 1 e/h and a LR + value of 13.7 for 10 e/h. 

. Discussion 

In this study, we characterised overnight AF signals using

ommon features extracted from RP analysis. We also assessed the

tility of these features to detect paediatric SAHS and its severity,

s well as its complementarity with ODI 3 . 

.1. Airflow characterization in the paediatric Sleep 

pnoea-Hypopnoea Syndrome context 

The averaged RPs from the four SAHS severity groups showed a

ade of recurrences, which is typical of non-stationary signals that

ary slowly over time [19] . This fact revealed the non-stationarity

f overnight AF regardless of the presence and severity of SAHS,

einforcing the need for a non-linear analytical tool to evaluate

he signal. Moreover, the predictability of AF, measured by DET ,

resented neither visual nor statistical differences among the

our severity groups. This suggests that the apnoeic AF signal is

undamentally predictable regardless the severity group it belongs

o. Hence, RPs would generally define nocturnal AF in children as

on-stationary but predictable to some extent. 

An increase in the density of recurrences in RPs (higher REC )

as appreciated as SAHS severity increased, suggesting that ap-

oeic episodes decrease variability in the AF signal due to its

mplitude being reduced to almost zero when these events occur.

his results agree with those obtained in a previous work where
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Table 2 

Diagnostic performance of BY-MLP AF and BY-MLP AF, ODI3 models, and ODI 3 in the test 

group for AHI thresholds 1, 5, and 10 e/h. 

AHI threshold = 1 e/h 

Se (%) Sp (%) PPV (%) NPV (%) LR + LR − Acc (%) 

BY-MLP AF 99,3 4,2 81,4 60,0 1,0 0,2 81,1 

BY-MLP AF, ODI3 97,7 22,2 84,1 69,6 1,3 0,1 83,2 

ODI 3 59,9 86,1 94,8 33,7 4,3 0,5 64,9 

AHI threshold = 5 e/h 

Se (%) Sp (%) PPV (%) NPV (%) LR + LR − Acc (%) 

BY-MLP AF 80,9 48,9 48,7 81,0 1,6 0,4 60,9 

BY-MLP AF, ODI3 78,7 78,3 68,5 86,0 3,6 0,2 78,5 

ODI 3 69,5 89,4 79,7 83,0 6,5 0,3 81,9 

AHI threshold = 10 e/h 

Se (%) Sp (%) PPV (%) NPV (%) LR + LR − Acc (%) 

BY-MLP AF 63,8 85,1 53,7 89,7 4,3 0,4 80,6 

BY-MLP AF, ODI3 78,8 94,3 78,8 94,3 13,7 0,2 91,0 

ODI 3 81,3 88,5 65,7 94,6 7,1 0,2 87,0 
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e analysed the variability of the AF by means of the central

endency measure [14] . In addition, AF showed an increasing

rend in the average prediction time ( LEN ) as AHI increases. This

ndicates that apnoeic events increase the time during which

uture phase-space trajectories of AF can be predicted from its

nitial state. Moreover, higher ENTR was appreciated as SAHS

everity increased, revealing that the apnoeas and hypopnoeas

ncorporate a wider distribution of diagonal line lengths across

he RP. Hence, apnoeic events could cause AF trajectory segments

o behave similarly at different times, regardless of their duration.

egarding the degree of non-stationarity, higher absolute values

f TREND were appreciated when the SAHS severity increased,

ighlighting that apnoeic events lead to less stationarity in the

octurnal airflow profile. Moreover, AF showed lower complexity

higher values of TT and Vmax ) as AHI increased. This indicates

hat the occurrence of apnoeas and hypopnoeas could modify the

F dynamics by making it remain longer in a similar state. In

his regard, several studies of SAHS in adults have analysed the

omplexity of AF by means of the Lempel-Ziv complexity [47,48] .

owever, they did not find potential differences between the SAHS

everity groups. It suggests that these RP features could be more

ffective for this purpose. Despite the trends showed by REC, LEN,

NTR, TREND, TT , and Vmax , only the severe SAHS group presented

ignificant differences ( p -value < 0.01) with the remaining groups.

herefore, these features may be depicting changes caused by

AHS, but only in certain circumstances such as those produced in

he most severely-affected children. 

AF manifested a higher occurrence of laminar states (higher

AM ) with higher AHI values, which agrees with the information

rovided by the averaged RPs. This fact suggests that the AF

ignal does not change state, or changes it very slowly, in the

resence of apnoeas and hypopnoeas. This was supported by the

ignificant differences found in LAM between the no-SAHS and

oderate SAHS groups, and between the severe SAHS group and

he remaining groups. Additionally, a decrease in exponential

ivergence (higher Lmax ) of the AF phase-space was appreci-

ted as SAHS worsened, indicating that apnoeic episodes could

ause the trajectory segments of AF to separate more slowly.

his was also observed in the averaged RPs, where the diagonal

ine clusters were thicker as SAHS severity increased. Moreover,

nly Lmax revealed significant differences between the mild

nd moderate SAHS group, and between the severe SAHS group

nd the remaining ones. Therefore, both laminar states ( LAM )

nd the exponential divergence ( Lmax ) could be common signs
f SAHS in AF and, consequently, be more useful for diagnosis

urposes. 

According to the aforementioned considerations, the AF charac-

erization indicates that RPs can offer information related to SAHS,

s well as the intrinsic nature of overnight AF in children. 

.2. Complementarity with the 3% oxygen desaturation index 

In accordance with the relevance shown in the previous AF

haracterization, Lmax was automatically selected by FCBF to be

ncluded in the optimum SAHS-related feature subset. However,

o other RP feature was selected, showing the redundancy of the

emaining extracted features. In addition, ODI 3 was also selected

y FCBF, which highlights the complementarity of the RP-derived

max with this widely-used clinical parameter. 

.3. Diagnostic usefulness and comparison with other studies 

BY-MLP AF, ODI3 model achieved high diagnostic capability

83.24%, 78.46%, and 90.96% Acc for 1, 5, and 10 e/h, respectively),

utperforming BY-MLP AF and single ODI 3 in most statistical met-

ics. BY-MLP AF, ODI3 obtained higher Se than single ODI 3 in 1 and

 e/h, as well as a similar one in 10 e/h, suggesting that SAHS

nderestimation from ODI 3 can be minimised using the informa-

ion extracted from RP of AF. In addition, BY-MLP AF, ODI3 reached

 LR − of 0.1 for 1 e/h and a LR + of 13.7 for 10 e/h. This fact is

f the utmost importance since LR + above 10 and LR − below

.1 are considered to provide strong evidence to establish the

resence or absence of a disease, respectively [49] . Accordingly,

ur proposed approach would be especially useful to confirm the

bsence of paediatric SAHS, as well as the presence of severe

AHS. Most severely-affected children have a high risk of suffering

dverse health consequences and comorbidities [3,27] . Moreover,

hey can present residual SAHS, as well as persistent risk factors

fter surgical treatment [29] . Hence, early detection and treatment

s required in these cases since a diagnostic delay can lead to

erious and potentially irreversible sequelae [29] . In addition, the

utomatic detection of no-SAHS and severe SAHS cases would

educe the waiting times and the workload of qualified medical

ersonnel, thus being able to focus on the less obvious cases. 

Table 3 summarizes previous studies aimed at automatically

iagnosing paediatric SAHS by using a reduced set of biomed-

cal signals. The diagnostic ability achieved in these studies is

ependent on whether the AHI cut-off point is used to exclude
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Table 3 

Summary of the state-of-the-art in the context of detection of paediatric SAHS. 

Studies Subjects ( n ) Signal AHI (e/h) Methods 

(Analysis/Selection/Classifier) 

Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LR + LR −

Shouldice et al. 

[7] 

50 ECG 1 Temporal and spectral analysis 

/ – / QDA 

85.7 81.8 84.0 85.7 81.8 4.7 0.2 

Gil et al. [8] 21 PPG 5 Analysis of PTTV / Wrapper 

methodology / LDA 

75.0 85.7 80.0 – – 5.2 ∗ 0.3 ∗

Tsai et al. [28] 

148 

SpO 2 1 Oxygen desaturation index of 

4% ( ODI 4 ) / – / – / 

77.7 88.9 79.0 ∗ – – 7.0 ∗ 0.3 ∗

5 83.8 86.5 85.1 ∗ – – 6.2 ∗ 0.2 ∗

10 89.1 86.0 87.1 ∗ – – 6.4 ∗ 0.1 ∗

Tan et al. [26] 

100 

ECG 1 Comparison of the AHI 

obtained from PSG with the 

AHI directly estimated of 

respiratory polygraphic (RP) / 

– / – / 

82.5 90.0 86.0 ∗ 97.1 56.3 8.3 ∗ 0.2 ∗

AF 5 62.5 100 85.0 ∗ 100 80 Inf ∗ 0.4 ∗

SpO 2 10 65.0 ∗ 100 ∗ 93.0 ∗ 100 ∗ 92.0 ∗ Inf ∗ 0.4 ∗

RIP 

Lázaro et al. [9] 21 PPG 5 Spectral analysis of PRV and 

DAP events detection / 

Wrapper methodology / LDA 

100 71.4 86.7 – – 3.5 ∗ 0 ∗

Garde et al. [12] 146 SpO 2 

PRV 

5 Temporal and spectral analysis 

/ Selection algorithm 

optimizing the AROC / LDA 

88.4 83.6 84.9 76.9 92.6 5.4 ∗ 0.1 ∗

Gutiérrez-Tobal 

et al. [13] 

50 AF 

SpO 2 

3 Spectral features and oxygen 

desaturation index of 3% 

( ODI 3 ) / FSLR / LR 

85.9 87.4 86.3 88.4 85.8 6.8 ∗ 0.2 ∗

Barroso-García 

et al. [14] 501 

AF 1 Spectral entropy and Central 

tendency measure / FSLR / LR 

60.5 58.6 60.0 81.2 25.0 1.1 0.9 

5 65.0 80.6 76.0 70.7 78.2 3.6 0.4 

10 83.3 79.0 80.0 52.8 93.5 4.0 0.2 

Hornero et al. [10] 

4191 

SpO 2 1 Statistical, spectral, non-linear 

features, and ODI 3 / FCBF / 

MLP 

84.0 53.2 75.2 81.6 53.7 1.8 0.3 

5 68.2 87.2 81.7 68.6 87.0 5.3 0.4 

10 68.7 94.1 90.2 67.7 94.3 11.6 0.3 

Álvarez et al. [11] 142 SpO 2 5 Anthropometric, statistical 

moments, desaturation 

indices, symbolic dynamics / 

FSLR / LR 

73.5 89.5 83.3 82.0 84.3 10.4 0.3 

Vaquerizo-Villar 

et al. [40] 
298 

SpO 2 5 Anthropometric variables, 

ODI 3 , spectral features from 

power spectral density and 

bispectrum / FCBF / MLP 

61.8 97.6 81.3 95.5 75.5 25.3 0.4 

10 60.0 94.5 85.3 80.0 86.7 11.0 0.4 

Xu et al. [50] 

432 

SpO 2 1 ODI 3 and third statistical 

moment of the spectral band 

of interest/ FCBF / MLP 

95.3 19.1 79.6 82.0 ∗ 51.5 ∗ 1.2 0.2 

5 77.8 80.5 79.4 72.3 ∗ 84.7 ∗ 4.0 0.3 

10 73.5 92.7 88.2 75.8 ∗ 91.9 ∗ 10.1 0.3 

Our proposal 

946 

AF 1 Features of Recurrence Plots 

and ODI 3 / FCBF / BY-MLP 

97.7 22.2 83.2 84.1 69.6 1.3 0.1 

SpO 2 5 78.7 78.3 78.5 68.5 86.0 3.6 0.3 

10 78.8 94.3 91.0 78.8 94.3 13.7 0.2 

QDA: Quadratic discriminant analysis; PTTV: Pulse transit time variability; LDA: Linear discriminant analysis; RIP: Chest and abdominal movement by respiratory induc- 

tance plethysmography; PRV: Pulse rate variability; DAP: Decreases in amplitude fluctuations of the PPG signal; AROC: Area under the receiver operating characteristics 

curves; FSLR: Forward stepwise logistic regression; LR: Logistic regression model; FCBF: Fast correlation-based filter; MLP: Multi-layer perceptron neural network; BY-MLP: 

MLP with Bayesian approach. 
∗ Computed from reported data. 
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or detect the paediatric SAHS (i.e., it is dependent on the AHI

threshold selected in each study). The AHI cut-off point = 1 e/h

is more clinically useful to discard paediatric SAHS, rather than

confirm its presence [7,26–29] . The global measurement of the

diagnostic ability (Acc = 83.2%) obtained in our study for this

threshold is high compared to other state-of-the-art studies. Our

proposal outperformed most of the them and is close to the

highest (Acc = 84.0% and 86.0%) [7,26] . Moreover, our LR − ( = 0.1)

is the lowest among all the state-of-the-art studies found in the

context of paediatric SAHS. This is of the upmost importance since

it has been reported that a value ≤0.1 provides strong evidence to

establish the absence of a disease [49] . Thus, our proposal is the

most appropriate to discard the presence of SAHS. 

AHI = 5 e/h is used as threshold to detect moderate SAHS

[8–12,14,26–29,40,50] . The Acc reached in our study (78.5%)
s slightly lower than the mean of the state-of-the-art studies

82.0%). However, most of them report an unbalanced Se/Sp pair.

n contrast, our Se/Sp pair is almost perfectly balanced, which may

e particularly desirable in order to provide similar importance to

he classification of subjects above and below the threshold of this

ntermediate illness degree. 

Finally, the AHI cut-off point 10 e/h is used to detect the

resence of severe SAHS in children [10,14,26–29,50] . The Acc and

R + obtained for this threshold in our study are very high (91.0%

cc and 13.7 LR + ) compared to other studies [10,14,28,40,50] . This

s another important result from our proposal since LR + above 10

s considered to provide strong evidence to establish the presence

f a pathological condition [49] , (i.e., severe SAHS). These results

ar outperform those achieved in others state-of-the-art studies in

he context of detection of severe paediatric SAHS, excluding the
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tudy carried out by Tan et al. [26] . However, it is a clinical study

hat compares the conventional polysomnography (PSG) to the

-channel respiratory polygraphy. The alternative diagnosis was

arried out by medical specialists without any automated signal

rocessing. 

In conclusion, our study obtained a single classification model

ith high diagnostic abilities for all three thresholds. Thus, despite

he limitations found for an AHI threshold of 5 e/h, our proposal

s useful in a clinical context as a screening process for both

iscarding the presence of paediatric SAHS (LR − equal or less than

.1) and detecting paediatric severe SAHS (LR + higher than 10).

oreover, the statistical power of our results is significantly higher

han the majority of the state-of-the-art studies due to the size of

ur cohort (946 subjects). 

.4. Limitations 

In spite of the usefulness illustrated by our proposed approach,

his study has some limitations. Although our database is large,

ore subjects originating from other sleep laboratories would

ake our results more generalizable. Furthermore, this would

e also convenient for the sake of the proportion of the subjects

elonging to each of the SAHS severity groups. In addition, the

election of RP embedding parameters ( m, τ , and ε) is a widely

iscussed topic for which there is no consensus as of yet [20] . The

ensitivity of the RP analysis to these parameters, along with the

ack of consensus on the method that should be used to optimise

hem, is another limitation. Consequently, although our study

upports the use of AMI, FNN and the fixed distance method,

he use, combination, and comparison of other methodologies

ould be the subject of future research. Moreover, it would be also

nteresting to evaluate other machine-learning algorithms with the

bility to estimate AHI. In addition, conducting studies with AF

ignals recorded at home is another future goal. Finally, analysing

he effects of our proposed method using other signals like ECG or

PG could be an interesting future research. 

. Conclusions 

In summary, this is the first study in which RP features from

F have been used to help in the diagnosis of paediatric SAHS. We

ave shown that RP can offer useful information related to both

aediatric SAHS and the intrinsic characteristics of overnight AF in

hildren. Our results also revealed that the exponential divergence

f the phase-space trajectories of AF provides complementary

nformation to the oxygen desaturations events. Combining both

pproaches, a BY-MLP neural network reached a high diagnostic

erformance for 1, 5, and 10 e/h. Moreover, this model achieved

trong evidence to rule out SAHS, as well as to predict severe

ases. Hence, these findings suggest that the analysis of RP applied

o AF signal provides useful information that could be used along

ith ODI 3 to help in paediatric SAHS diagnosis. 
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