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Abstract: Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate vari-
ability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional
spectral analysis. However, bispectral analysis provides both linearity and stationarity information
and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to
assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic
purposes in two large pediatric databases (0–13 years). The first database (training set) was composed
of 981 overnight ECG recordings obtained during polysomnography. The second database (test set)
was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized
three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0–0.04 Hz;
low frequency: 0.04–0.15 Hz; and high frequency: 0.15–0.40 Hz), as well as three OSA-specific
frequency ranges obtained in recent studies (BW1: 0.001–0.005 Hz; BW2: 0.028–0.074 Hz; BWRes: a
subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The
fast correlation-based filter was applied to the features obtained from the classic and OSA-specific re-
gions, showing complementary information regarding OSA alterations in HRV. This information was
then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting
pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP
models showed high and similar accuracy (Acc) and areas under the receiver operating character-
istic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions:
Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific
regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness
of bispectral analysis on HRV to characterize and diagnose pediatric OSA.

Keywords: pediatrics; obstructive sleep apnea; heart rate variability; bispectral analysis; multi-layer
perceptron neural network

1. Introduction

Obstructive sleep apnea (OSA) is a common respiratory disorder affecting up to 5% of
the general pediatric population [1]. OSA is characterized by the occurrence of either total
upper airway obstruction (apnea events) and/or events of significant airflow reduction
(hypopnea events) during sleep, leading to decreased blood oxygen saturation and/or
sleep fragmentation [2,3]. As a result, pediatric OSA has been associated with several
adverse cognitive and cardiovascular consequences, such as learning deficits and reduced
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academic performance [4,5], as well as alterations in autonomic regulation and vasomotor
tone, increases in systemic and pulmonary vascular blood pressure, nocturnal cardiac
strain and both left and right ventricular hypertrophy [1,3]. The increased cognitive and
cardiovascular risks obviously threaten the long-term cardiovascular health [1,3,6] and
academic potential of children [7], such that early detection and treatment of pediatric OSA
are essential.

Nocturnal laboratory-based polysomnography (PSG) is considered the standard di-
agnosis technique for pediatric OSA. This test not only allows for the detection of the
presence or absence of pediatric OSA but also enables estimates of OSA severity [8,9].
During a PSG, a set of leads is placed on the child’s body to register biological signals,
including an electrocardiogram (ECG), electroencephalography, oximetry (SpO2) or airflow,
among others [8]. Then, medical experts evaluate these signals following well-established
rules to extract indices of respiratory disturbance [10]. Among those indices, the common
choice to illustrate and report OSA severity is the Apnea–Hypopnea Index (AHI), which
reflects the number of total apneic and hypopneic events per hour (e/h) of sleep [8,10].
Despite the usefulness of PSG to diagnose pediatric OSA, the procedure needs a specialized
laboratory and is resource-intensive and time-consuming. Moreover, the high number of
sensors connected to the child along with having to sleep outside of home makes PSG also
especially uncomfortable and inconvenient for patients and caretakers [11,12]. These draw-
backs have motivated the search for alternatives to diagnose pediatric OSA and to study
its consequences while reducing the number of signals required for the diagnosis [11–13].
A recently published systematic review [14] analyzed and conducted a meta-analysis on
machine learning techniques employed to automatically diagnose pediatric OSA. Among
the shortcomings identified in the literature, the authors highlighted that most of the
studies were exclusively based on the analysis of SpO2 signals. Thus, there exists a lack
of studies performing machine learning techniques using other physiological signals as
alternative approaches to the gold standard PSG [14].

Evaluation of the adverse cardiovascular implications of pediatric OSA has high-
lighted autonomic dysfunction as the main reason for cardiac alterations, since the auto-
nomic nervous system (ANS) plays a major role in cardiovascular system regulation [15–17].
In this sense, analysis of heart rate variability (HRV) has gained obvious relevance as it
reflects the ANS state [17,18]. HRV non-invasively assesses the variations in the heart
rate over time, meaning it can be used to analyze cardiovascular modulation due to
OSA [18–21]. As a result, a variety of studies have evaluated HRV in the context of pe-
diatric OSA [16,17,22–28]. The vast majority of these studies focused on HRV analysis
in the temporal or frequency domain. When using these traditional analysis approaches,
nonlinearity and non-Gaussianity are ignored [29]. Although HRV signals are usually
nonlinear and non-Gaussian in nature [29,30], under some specific conditions, HRV can
show dynamics where these nonlinearities are not always present [31]. Nevertheless, in the
context of pediatric OSA, the nonlinear dynamics of HRV signals can be increased during
sleep [21,32], as well as by cardiac alterations due to OSA [20,21,30,32]. Furthermore, in
the present study, the presence of HRV nonlinear dynamics in the pediatric OSA context
has been demonstrated (see Appendix C). Despite this, only two of the previous studies on
pediatric OSA performed non-lineal analysis of HRV signals using Poincaré plots [17,33].
Notwithstanding, application of bispectral analysis of HRV would likely constitute a further
advance, as it allows for reflection of not only nonlinear behaviors but also non-Gaussian
and non-stationary events, all the while retaining phase and amplitude information, and
being more immune to noise [29]. The unique advantages conferred by the bispectrum
analysis properties have led to its application in HRV for some purposes such as evaluation
of cardiac state [34–36], congestive heart failure [37], major depression [38] or even OSA
diagnosis in adults [30].

OSA was initially described in adults, and its cardiac implications and effects on
HRV have been extensively studied in recent decades [39–41]. Nevertheless, pediatric
OSA presents differentiating etiological, diagnostic and treatment considerations [5]. It
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has led to an increasing interest in the study of pediatric OSA to gain insights into the
mechanism underlying pediatric OSA pathogenesis in recent years [3,5]. The advances
in the study of pediatric OSA have demonstrated that the long-term effects of the disease
in the child population can be avoided with a timely treatment [11]. Accordingly, more
stringent rules were defined to diagnose pediatric OSA [10]. In this sense, while an adult
is considered as an OSA patient when presenting an AHI = 5 e/h, the presence of an
AHI = 1 e/h in children is enough to diagnose pediatric OSA. Similarly, an adult patient
with an AHI = 10 e/h is considered as mild OSA, whilst the same AHI in children is
considered as severe OSA [42]. Furthermore, an apneic event is scored in adults when it
lasts over 10 s, while in children, 6 s is enough to score a respiratory event as apneic [10].
These distinctions between children and adults also produce a marked difference in the
HRV alterations due to OSA and consequently affect the HRV bispectrum in a distinct
way, evidencing the necessity of independent HRV pediatric study. However, to date, HRV
bispectral analysis has never been evaluated in the pediatric OSA context.

Of note, previous bispectral analysis study in adults focused on OSA [30], as well as
some of the aforementioned studies [34,35], considered HRV bispectral analysis that was
restricted to the non-redundant bispectral region. This region, as a result of the bispectrum
symmetric properties, is known to completely define the overall information contained in
the bispectrum [29]. Other studies analyzed particular bispectral regions defined based on
the classic frequency ranges of HRV analysis [36–38]. However, in a study using regular
spectral analysis [27], we recently showed that there exist OSA-specific frequency ranges
that allow for better characterization of the alterations occurring in HRV in the context of
pediatric OSA.

Based on these considerations, we hypothesized that bispectral analysis of HRV
contains novel and useful information to characterize and diagnose pediatric OSA. Conse-
quently, the main objectives of this study were to perform, for the first time in the field of
pediatric OSA, a characterization and evaluation of bispectral regions bounded with classic
and OSA-specific HRV frequency ranges. Therefore, the main novelty of this study is the
analysis of HRV bispectral regions defined by classic and OSA-specific frequency ranges
to characterize and diagnose pediatric OSA. Furthermore, we propose a novel bispectral
parameter, which is analyzed here for the first time.

2. Subjects and Signals under Study

The population included in this study was the same as that in a previous work [27]
and was composed of 1738 children between 0 and 13 years of age. This cohort consists
of two large databases. The first one was generated in the Pediatric Sleep Unit at the
University of Chicago (UofC) Medicine Comer Children’s Hospital (Chicago, IL, USA)
and involved 981 children referred for a nocturnal laboratory-based PSG due to clinical
symptoms suggestive of OSA. The second database was a subset of 757 PSGs performed
during the multicenter Childhood Adenotonsillectomy Trial (CHAT) study [43,44].

In regard to the UofC dataset, the Ethics Committee of the UofC Medicine Comer Chil-
dren’s Hospital approved the protocol (#11-0268-AM017, #09-115-B-AM031 and #IRB14–
1241), and the study was conducted in accordance with the Declaration of Helsinki. Ad-
ditionally, before the acquisition of the ECGs during the PSG, informed consent from all
children caretakers was acquired. For comparison purposes, the training–test division
carried out was the same as that in our preceding work [27], meaning the 981 children from
the UofC sample served as the training set.

Regarding the CHAT set (clinical trial identifier: NCT00560859), information about
the rationale, study design and methodological aspects can be perused in the published
literature [43,44]. Initially, there were 779 pediatric PSG recordings, but 22 subjects were
removed from the study because they did not fulfill the signal pre-processing protocol
detailed below. Accordingly, the remaining 757 children were retained as the test set.

The PSG studies from both databases were evaluated by pediatric sleep experts
from the different centers who diagnosed the children following the scoring rules estab-
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lished by the American Academy of Sleep Medicine [10]. Subsequently, the AHI was
obtained and used to determine OSA severity. In accordance with previous pediatric OSA
studies [11,27,42,45,46], we defined four OSA severity groups based on three common AHI
cutoff points (1, 5 and 10 e/h). Thus, the severity groups in this study included: no-OSA
(AHI < 1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10 e/h) and severe
OSA (AHI ≥ 10 e/h) groups. Clinical and demographic data of the children under study
are shown in Table 1.

Table 1. Clinical and demographic data from children included in this study.

All Training Set (UofC) Test Set (CHAT)

Subjects (n) 1738 981 757
Age (years) 6.4 [3.3] 6.0 [6.0] 7.0 [2.4]
Males (n) 962 (55.35%) 602 (61.37%) 360 (47.95%)

BMI (kg/m2) 17.63 [5.37] 18.02 [5.86] 17.28 [4.64]
AHI (e/h) 2.23 [5.27] 3.8 [7.76] 1.46 [2.07]

AHI ≥ 1 (e/h) 1309 (75.31%) 808 (82.36%) 501 (66.18%)
AHI ≥ 5 (e/h) 519 (29.86%) 407 (41.49%) 112 (14.80%)

AHI ≥ 10 (e/h) 298 (17.15%) 229 (23.34%) 69 (9.11%)
Data are shown as median [interquartile range] or n (percentage). BMI: body mass index; AHI: Apnea–Hypopnea
Index; UofC: University of Chicago; CHAT: Childhood Adenotonsillectomy Trial.

In order to conduct the HRV analysis, ECGs from both datasets were equally pre-
processed [27]. First, we removed the initial and last 15 min of the ECG recordings to
prevent the signals from periods of early and final artifacts [27]. After this removal, we
assessed that, at least, 3 h of sleep recording was available for each child [46,47]. The next
step consisted in R peak detection. To carry out this process, the algorithm developed
by Benítez et al. [48] was used, which is based on the Hilbert transform and has been
evaluated in previous studies [27,49]. Then, HRV signals were derived by measuring the
time between consecutive R peaks, i.e., RR intervals [19]. An artifact rejection step was then
performed to ensure that all the intervals considered were physiologically plausible (N-N
intervals). To this effect, we rejected those RR intervals that did not satisfy the following
criteria [21]: (i) RR interval duration was between 0.33 and 1.5 s, and (ii) difference from
the previous RR interval was higher than 0.66 s. After the artifact rejection, we confirmed
that the duration of signals still surpassed 3 h of sleep. At this point, the remaining
HRV samples were not equally distributed among the time; therefore, all the signals were
resampled to a constant sampling frequency of 3.41 Hz [21,49], allowing us to perform
higher-order spectra (HOS) analyses.

3. Methods

The methodology followed can be divided into three stages. First, we conducted
a feature extraction stage to characterize each of the bispectral regions considered in
the study. Second, we performed an automatic feature selection stage based on the fast
correlation-based filter (FCBF) algorithm [50] considering two cases, one for the regions
defined by classical HRV frequency ranges, and the other for the regions defined by OSA-
related frequency ranges. Finally, a classification stage was conducted based on multi-layer
perceptron (MLP) neural networks for the three AHI cutoffs used for partitioning OSA
severity groups (1 e/h, 5 e/h and 10 e/h) and for each feature subset resulting from the
feature selection stage.

3.1. Bispectrum Estimation

The estimation of power spectra has been one of the main tools for the analysis of bio-
logical signals for decades [29]. This technique contains information of the autocorrelation
sequence, which is enough to characterize Gaussian signals, but information regarding the
phase relationship among frequency components, as well as phase coupling, is lost during
the process [29,34]. HRV signals, as with many other biological signals, are essentially



Entropy 2021, 23, 1016 5 of 30

nonlinear, non-Gaussian and non-stationary [29]. Therefore, power spectrum analysis may
not be able to completely characterize changes in HRV series [34]. HOS analysis, mean-
while, contains both amplitude and phase information and can be used to characterize
Gaussianity, stationarity and linearity deviations [29].

HOS are spectral representations of higher-order cumulants of a random process [29].
In particular, the bispectrum refers to the HOS for the third-order cumulant, reflecting
spectral decomposition of the signal skewness over the frequency [29]. Bispectrum com-
putation is based in the 2D Fourier transform of the third-order cumulant, and it can be
defined in terms of the Fourier transform as [29,34]

B( f1, f2) = X( f1)·X( f2)·X∗( f1 + f2), f1, f2 = 0, · · · , fN (1)

where X(f ) is the Fourier transform of a signal, f 1 and f 2 are the frequency indices, and fN
is the Nyquist frequency. The resultant matrix reflects the phase coupling degree between
frequency components for each pair f 1,f 2 [29].

As the bispectrum preserves both amplitude and phase information, it allows for
assessment of interactions between signal patterns [29]. Likewise, bispectral analysis is
used to evaluate changes in signal Gaussianity, where bispectral values = 0 indicate that
signal components are Gaussian, and deviations from the Gaussianity of the components
are otherwise detected [29]. Furthermore, bispectral analysis detects linearity deviations
through phase coupling between its frequency components [29]. Phase coupling between
three harmonic components at the f 1, f 2 and f 3 frequencies and phase angles ϕ1, ϕ2 and ϕ3
is described as f 3 = f 1 + f 2 and ϕ3 = ϕ1 + ϕ2 [29]. Thus, if phase coupling exists, it means
that there are nonlinear interactions between harmonic components [29].

In this work, the HRV bispectrum was estimated employing a Hamming window of
210 samples with 50% overlapping and an FFT of 211 samples. After bispectrum matrix
computation, a normalization was applied by dividing each element of the matrix by the
sum of all matrix elements as [29,46]

BN( f1, f2) =
B( f1, f2)

BP
, f1, f2 = 0, · · · , fN (2)

where BP is the total bispectral power, measured as the sum of all magnitudes of the
bispectral matrix. This normalization was applied in order to ensure that all elements
of the matrix were bounded between 0 and 1, reducing subject inter-variability due to
physiological conditions other than OSA [46].

3.2. Determination of Bispectral Regions

The bispectral matrix, by definition, presents symmetric properties that render eval-
uation of a triangular non-redundant area sufficient for a full bispectrum characteriza-
tion [29,34]. This region is commonly named the region of interest (ROI) and satisfies
0 ≤ f 1 ≤ f 2 ≤ f 1 + f 2 ≤ fN [29,34]. As it was mentioned in the Introduction section, previ-
ous studies analyzing HRV bispectra focused their analysis along the whole ROI [30,34,35].
The analysis of HRV in the frequency domain, however, is commonly performed along the
classic HRV spectral bands, i.e., the very low frequency (VLF, 0–0.04 Hz), low frequency
(LF, 0.04–0.15 Hz) and high frequency (HF, 0.15–0.4 Hz) bands [18]. Past studies defined
sub-band regions inside the bispectral ROI, bound by those frequencies [36–38], which
we have termed classic bispectral regions. Furthermore, in a previous study applying a
common spectral analysis, three pediatric OSA-related spectral ranges for HRV analysis
were identified, which outperformed the classic spectral bands for pediatric OSA charac-
terization and diagnosis [27]: BW1 (0.001–0.005 Hz), BW2: (0.028–0.074 Hz) and BWRes
(0.04 Hz around HF peak). A detailed explanation of the process that led us to obtain those
frequency ranges can be found in Appendix A. Following a similar reasoning to those
studies that analyzed classic bispectral regions, three OSA-specific bispectral regions can
be defined as bound by those OSA-related frequency ranges.
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Therefore, in this study, six sub-band regions were assessed, three based on the classic
HRV frequency ranges (VLF, LF and HF bispectral regions), and three based on the HRV
OSA-related frequency ranges (BW1, BW2 and BWRes bispectral regions). To provide an
overview, Figure 1 shows the averaged bispectrum magnitude in the training set for the
four disease severity groups considered in the range 0–0.4 Hz. It can be observed that the
no-OSA bispectral power is mainly concentrated below 0.02 Hz, and it spreads over a higher
range of frequencies as the severity increases. The 3D bispectral region representations,
averaged for each severity group, are shown in Appendix A Figures A1–A6.
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3.3. Feature Extraction Stage

In order to characterize the bispectral regions under study, we computed features
based on four different approaches: bispectral region amplitude, bispectral region entropy,
bispectral region moment and weighted center of bispectrum (WCOB) region features.
Furthermore, we introduced a new bispectral feature in this study.

As explained in Appendix A, BWRes is an adaptive frequency band based on the
maximum value inside the HF range. It means that the frequency range is different for
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each subject, as it depends on the location of this peak. Therefore, contrary to the rest of the
regions, BWRes might not be centered in the main diagonal of the bispectral matrix. Before
feature extraction, we confirmed that this occurred in most of the subjects considered. As
some of the features included in this study were computed over the diagonal of each region,
the physiological meaning of the diagonal elements was lost (f 1 6= f 2); therefore, these
features were not computed over the BWRes region in this study.

3.3.1. Bispectral Region Amplitude Features

• Maximum amplitude (Bmax), measured as the maximum magnitude value inside each
of the regions considered [46]:

Bmax = max(|BN( f1, f2)|), f1, f2 ∈ Ω, (3)

where Ω represents one of the six regions considered.
• Minimum amplitude (Bmin), measured as the minimum magnitude value inside each

of the regions considered [46]:

Bmin = min(|BN( f1, f2)|), f1, f2 ∈ Ω (4)

• Total bispectral power (Btotal), measured as the sum of all magnitudes inside each of
the regions considered [46]:

Btotal = ∑
f1, f2∈ Ω

|BN( f1, f2)|. (5)

This parameter allows measuring deviations from Gaussianity [46].
Following a similar tendency to the spectral approach [27], as severity increases,

higher values of bispectral amplitude features are expected in regions related to OSA, such
as BW2 or LF. Consequently, lower values with OSA in regions related to respiration, such
as HF or BWRes, are also expected.

3.3.2. Bispectral Entropy Features

• Normalized bispectral entropy (BE1), normalized squared bispectral entropy (BE2) and
normalized cubed bispectral entropy (BE3). These parameters, based on Shannon’s
entropy, quantify the irregularity of the bispectral distribution in each region and are
computed as [29,34]

BEi = − ∑
j∈ Ω

pj· log
(

pj
)
, i = 1, 2, 3 (6)

where p is the magnitude distribution of the region elements:

pj =
|BN( f1, f2)|i

∑ f1, f2∈ Ω|BN( f1, f2)|i
, i = 1, 2, 3 (7)

The values of the bispectral entropies increase with the randomness of a process,
meaning changes in the HRV irregularity as a result of OSA [30] would be captured by the
bispectral entropies of the regions.

• Phase entropy (PE), which quantifies the phase regularity of the region [29]. PE,
as with the bispectral entropies, is higher as the randomness of a process increases,
meaning it would be zero for a harmonic, periodic and predictable process [34]. PE
computation is performed applying Shannon’s entropy to the normalized distribution
of the region phase angles [29,46]:

PE = − ∑
n∈ Ω

p(Ψn)· log(p(Ψn)) (8)
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where
p(Ψn) =

1
L ∑

f1, f2∈ Ω
Ind(ϕ[BN( f1, f2)] ∈ Ψn), (9)

Ψn =

{
ϕ

∣∣∣∣−π +
2πn

N
≤ ϕ < −π +

2π (n + 1)
N

}
, n = 0, 1, . . . , N − 1 (10)

where Ind(·) is the indicator function (equal to 1 if ϕ is within the range of histogram
bins Ψn), ϕ is the phase angle of the region, and N is the bin number of the histogram.

3.3.3. Bispectral Region Moment Features

• The sum of the logarithmic magnitude values of the region (H1), sum of the logarithmic
magnitude values of the diagonal of the region (H2) and first- and second-order
spectral moments of the magnitude values of the diagonal elements of the region (H3
and H4, respectively). These features were included as they allow characterizing the
nonlinearity of the regions and are computed as follows [46]:

H1 = ∑
f1, f2∈ Ω

log(|BN( f1, f2)|). (11)

H2 = ∑
fk ,∈ Γdiag

log(|BN( fk, fk)|). (12)

H3 = ∑
fk ,∈ Γdiag

k· log(|BN( fk, fk)|). (13)

H4 = ∑
fk ,∈ Γdiag

(k− H3)2· log(|BN( fk, fk)|) (14)

Those children suffering from OSA would be expected to present an increased bispec-
tral power concentration in the region defined by frequency ranges related to the occurrence
of apneic events (BW2). This would mean an increase in the phase coupling between the
frequency components of this region and, accordingly, higher nonlinearity [30,46]. There-
fore, OSA children would be expected to present higher values of bispectral region moment
features in regions related to OSA, and lower values in the respiratory-related regions.

3.3.4. Bispectral WCOB Features

• WCOB allows reflecting the interaction of different frequency components through
the assignment of a weight to each bispectral point of the region [46]. The weighted
center of each region is composed of two vectors, f1m and f2m, which indicate the
coupling focus of the region as a summary of the frequency interaction [46]. Those
components of WCOB are computed as [46]

f 1m =
∑ f1, f2∈ Ω f1·BN( f1, f2)

∑ f1, f2∈ Ω BN( f1, f2)
, (15)

f 2m =
∑ f1, f2∈ Ω f2·BN( f1, f2)

∑ f1, f2∈ Ω BN( f1, f2)
(16)

WCOB parameters are associated with bispectral peak values, with decreases in f1m
and f2m values implying an activity shift towards lower frequencies [46]. Hence, as OSA
children are expected to present higher activity in bispectral regions related to apneic
events, their WCOB would be centered around these regions.

3.3.5. Relative Power of the Diagonal, a Novel Bispectral Feature

• The relative power of the diagonal (RPDiag), computed as the sum of the bispectral
amplitudes of the diagonal elements of the region, after a normalization applied over
the whole diagonal. This novel parameter evaluates the relative bispectral magni-
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tude value inside the diagonal of the region with respect to the complete bispectral
diagonal magnitude:

RPDiag = ∑
fk ∈ Γdiag

|DiagN( fk)|, (17)

where Γdiag represents the diagonal elements of one of the regions considered except
BWRes, and DiagN is the normalized bispectral diagonal after the normalization
performed such that

DiagN( fk) =
Diag( fk)

DP
, fk = 0, · · · , fN (18)

where Diag is the diagonal of the bispectral matrix, and DP is the diagonal power,
measured as the sum of all amplitudes of the Diag elements.

The diagonal elements of a region are a particular case of the bispectral matrix when
f1 = f2; therefore, this parameter, as well as H2, is intended to measure the phase coupling
between the harmonic components of HRV signals, such that f 3 = 2f 1 and ϕ3 = 2ϕ1 [30,46].

RPDiag and H2 present two important differences. First, a normalization over the
whole diagonal is applied in this novel feature. As a result of this normalization, the
sum of all bispectral amplitudes of the diagonal elements is equal to 1, meaning RPDiag
evaluates the proportion of the total diagonal bispectral power contained in the region.
Then, as the normalization is scaling the values of the diagonal elements, we use a linear
scale to compute the sum of the relative power instead of the logarithmic scale applied
in H2. The rationale of this parameter lies in the normalization considering all of the
frequency range. When OSA occurs, there is an alteration in the synchronization of the
heart rhythm [30], leading to a redistribution of HRV activity to frequency components
associated with the occurrence of apneic events. Thus, the normalization applied here
considers not only the bispectral power in the diagonal of the region evaluated but also
that in other diagonal elements. This influence of the redistribution to other frequency
ranges is lost when applying a logarithmic scale.

Table 2 summarizes the bispectral features computed in every region under study.

Table 2. Summary of the bispectral features initially computed in each region. Features related to the
diagonal of the region were excluded in the BWRes region.

Classic Region Feature Set OSA-Specific Region Feature Set

Features VLF LF HF BW1 BW2 BWRes

RPDiag VLF_RPDiag LF_RPDiag HF_RPDiag BW1_RPDiag BW2_RPDiag -
Bmax VLF_Bmax LF_Bmax HF_Bmax BW1_Bmax BW2_Bmax BWRes_Bmax
Bmin VLF_Bmin LF_Bmin HF_Bmin BW1_Bmin BW2_Bmin BWRes_Bmin
BTotal VLF_BTotal LF_BTotal HF_BTotal BW1_BTotal BW2_BTotal BWRes_BTotal
BE1 VLF_BE1 LF_BE1 HF_BE1 BW1_BE1 BW2_BE1 BWRes_BE1
BE2 VLF_BE2 LF_BE2 HF_BE2 BW1_BE2 BW2_BE2 BWRes_BE2
BE3 VLF_BE3 LF_BE3 HF_BE3 BW1_BE3 BW2_BE3 BWRes_BE3
PE VLF_PE LF_PE HF_PE BW1_PE BW2_PE BWRes_PE
H1 VLF_H1 LF_H1 HF_H1 BW1_H1 BW2_H1 BWRes_H1
H2 VLF_H2 LF_H2 HF_H2 BW1_H2 BW2_H2 -
H3 VLF_H3 LF_H3 HF_H3 BW1_H3 BW2_H3 -
H4 VLF_H4 LF_H4 HF_H4 BW1_H4 BW2_H4 -
f1m VLF_f1m LF_f1m HF_f1m BW1_f1m BW2_f1m BWRes_f1m
f2m VLF_f2m LF_f2m HF_f2m BW1_f2m BW2_f2m BWRes_f2m

3.4. Feature Selection Stage

Once each region was characterized with the features detailed in Table 2, we con-
structed two different optimal feature subsets (classic and OSA-specific bands) via the
FCBF algorithm. This method, which has been previously demonstrated to be useful
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in pediatric OSA diagnosis [42,45,46,51], allows creating a non-redundant and relevant
feature set based on the symmetrical uncertainty [50].

We performed the selection stage over 1000 bootstrap replicates from the training
dataset in order to obtain generalizable and non-dependent subsets [52]. Those features
selected more than 500 times were chosen to form the optimal subsets [42,45,51].

3.5. Classification Stage

Similar to previous pediatric OSA diagnosis studies, we conducted the classification
stage using MLP neural networks [42,46,51]. These neural networks are typically formed
by an input layer, a hidden layer and an output layer, each one composed of a different
number of neurons, called perceptrons [53]. Each perceptron of an MLP network layer is
connected to all the perceptrons from the next layer, with a weight associated with this
connection [53]. The number of perceptrons in the first layer is equal to the number of
input features. The number of perceptrons in the output layer depends on the objective of
the network. We performed binary classification for the three severity thresholds (1, 5 and
10 e/h), as in our previous work [27]. This implies three different MLP neural networks
for each feature subset, with one perceptron in the output layer providing the posterior
probability of belonging to the severity group considered at each case [53]. The number
of perceptrons in the hidden layer (NH) is a parameter to be optimized. To deal with
overfitting, we also introduced a regularization parameter (λ) in the tuning of the network
weights, which were randomly initialized [53].

The optimization of the hidden layer design parameters (NH and λ) was performed,
again, by means of 1000 bootstrap replicates from the training dataset, but different from
the replicates employed in the feature selection stage. We computed Cohen’s kappa (k) for
each NH/λ combination and selected those values where k was maximum [42,46,51].

Thus, six MLP neural networks were optimized, one for each feature subset and
severity threshold.

3.6. Statistical Analysis

In the training set, the features included in this study did not pass normality and
homoscedasticity tests. For this reason, we assessed statistically significant differences
(p-value < 0.01 after applying Bonferroni correction) between bispectral features from
OSA severity groups through the non-parametric Kruskal–Wallis test. To provide a visual
representation of these differences, along with the distribution followed by the features in
each severity group, boxplots for each selected feature were also constructed.

Subsequently, we conducted a correlation analysis. To this effect, relationships be-
tween the features selected and some polysomnographic indices were evaluated using
Spearman’s partial correlation coefficient (ρS), controlling the possible effect of age. The
polysomnographic indices, related to OSA, as well as sleep structure and quality, were
the same as those in [27]: AHI, Obstructive AHI (OAHI), obstructive apnea index (OAI),
oxygen desaturation index (ODI), wake after sleep onset (WASO), number of awakenings
during total sleep time (#Awakenings), percentage of total sleep spent in sleep stages N1,
N2, N3 and rapid eye movement (%N1, %N2, %N3 and %REM, respectively) and total
arousal index per hour of sleep (TAI). Correlation analysis was performed on the test set.

Finally, after the optimization of the MLP neural networks in the training set, the
diagnostic performances of each individual selected feature and optimized model were
evaluated in the test set in terms of sensitivity (Se), specificity (Sp), accuracy (Acc) and area
under the receiver operating characteristic curve (AUC).

4. Results
4.1. Feature Selection in the Training Set

We conducted two feature selection processes. As Table 2 shows, the number of input
features for the classic bispectral region set was 42, while in the case of the OSA-specific
region set, there were up to 38 features. The feature selection through FCBF allowed
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reducing the amount of redundant information while assessing feature complementarity.
Figure 2 shows the number of times that each feature was selected by the algorithm in
the 1000 bootstrap replicates for both cases. In the case of the classic regions (Figure 2a),
it can be observed that the optimum subset (BISPClassic) was formed by three features,
one of each region: VLF_f2m, LF_BE2 and HF_PE. Regarding the OSA-specific region set
(Figure 2b), the optimum subset (BISPSpecific) was composed of four features selected more
than 500 times: BW2_RPDiag, BW2_BE1, BWRes_Bmin and BWRes_BE3. None of the BW1
region features considered were selected over 500 times.
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4.2. Descriptive Analysis of the Features Selected

Figures 3 and 4 show the boxplot distributions of the four OSA severity groups
for the features selected in both the BISPclassic and BISPSpecific subsets, respectively. The
p-value resulting from the Kruskal–Wallis test is also depicted in these figures. It can be
appreciated that, in the BISPClassic subset, VLF_f2m experienced an increase with OSA
severity, while a decrease in LF_BE2 and HF_PE occurred as the OSA severity increases.
For the features included in BISPSpecific, there was a clear rise in the BW2_RPDiag values,
along with a slight increase in BWRes_BE3 with OSA severity. In contrast, the BW2_BE1
values experienced a decrease with the disease. BWRes_Bmin was the only parameter
showing an unclear tendency among the severity groups, which led it to be the only one
that did not show statistically significant differences. The remaining six parameters showed
statistically significant differences among the four OSA severity groups (p-value < 0.01
after Bonferroni correction).
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Figure 4. Boxplot distribution of the features selected in the bispectral OSA-specific region feature subset for the four
OSA severity groups in the training set. The p-value obtained with the Kruskal–Wallis test is shown in each sub-
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(d) BWRes_BE3 boxplots and p-value.

4.3. MLP Network Optimization and Training

After extraction of the optimum feature subsets, six MLP models were optimized:
three models with BISPclassic features as input (MLP1Classic, MLP5Classic and MLP10Classic,
with AHI = 1, 5 and 10 e/h as thresholds for binary classification, respectively), and three
models with BISPSpecific as input features (MLP1Specific, MLP5Specific and MLP10Specific, with
AHI = 1, 5 and 10 e/h as a threshold for binary classification, respectively). For each model,



Entropy 2021, 23, 1016 13 of 30

NH varied from 2 to 20 in steps of 1, and from 22 to 50 in steps of 2. Similarly, λ varied from
0.5 to 10 in steps of 0.5. Each NH/λ pair resulted in an averaged k through 1000 bootstrap
replicates of the training set; therefore, we selected the NH/λ combination with the higher
averaged k. NH = 2 and λ = 5 were the optimized design parameters selected in four
out of six MLP models: MLP1Classic, MLP5Classic, MLP5Specific and MLP10Specific. For the
MLP10Classic model, the optimized design parameters were NH = 34 and λ = 5. Finally, the
optimized parameters in MLP1Specific were NH = 38 and λ = 5.

4.4. Correlation Analysis in the Test Set

The results of the correlation study are shown in Table 3. Although the values of
|ρS| obtained were generally low, some of the correlations evaluated were statistically
significant (p-value < 0.01 after Bonferroni correction). VLF_f2m and BW2_RPDiag showed
similar behaviors, with a statistically significant positive ρS with the four respiratory
indices (AHI, OAHI, OAI and ODI) and TAI, as well as a negative ρS with %REM. In
the opposite way, BW2_BE1 obtained a negative ρS with the four respiratory indices and
TAI. LF_BE2 also reached a statistically significant negative ρS with AHI, OAHI and TAI.
BW2_RPDiag reached the highest absolute correlation values among almost all of these
statistically significant correlations, only being equaled by the ρS reached between VLF_f2m
and OAHI. None of the selected BWRes features nor HF_PE obtained statistically significant
correlations with any of the polysomnographic indices considered in this study.

Table 3. Results of the partial correlation study in the test set between features selected for each subset and the polysomno-
graphic indices considered.

BISPClassic Features

PSG Index
VLF_f2m LF_BE2 HF_PE

ρS p-Value ρS p-Value ρS p-Value

AHI 0.274 <<0.01 −0.185 <<0.01 −0.112 0.002 *
OAHI 0.261 <<0.01 −0.149 <<0.01 −0.097 0.008
OAI 0.167 <<0.01 −0.105 0.004 * −0.064 0.079
ODI 0.215 <<0.01 −0.123 0.001 * −0.054 0.138

#Awakenings −0.075 0.039 −0.027 0.461 −0.020 0.586
WASO −0.003 0.929 0.065 0.076 −0.022 0.538
%N1 0.089 0.014 −0.071 0.052 −0.030 0.404
%N2 −0.034 0.357 0.099 0.007 * 0.013 0.715
%N3 0.034 0.355 −0.025 0.497 −0.044 0.23

%REM −0.125 0.001 −0.052 0.154 0.059 0.108
TAI 0.213 <<0.01 −0.158 <<0.01 −0.115 0.002 *

BISPSpecific Features

PSG Index
BW2_RPDiag BW2_BE1 BWRes_Bmin BWRes_BE3

ρS p-Value ρS p-Value ρS p-Value ρS p-Value

AHI 0.308 <<0.01 −0.180 <<0.01 0.054 0.136 0.045 0.214
OAHI 0.261 <<0.01 −0.180 <<0.01 0.098 0.007 * 0.028 0.435
OAI 0.177 <<0.01 −0.173 <<0.01 0.071 0.051 0.058 0.112
ODI 0.247 <<0.01 −0.139 0.001 0.019 0.61 0.072 0.047

#Awakenings −0.033 0.372 −0.001 0.994 −0.006 0.876 0.035 0.331
WASO 0.071 0.05 0.078 0.031 −0.018 0.622 0.056 0.126
%N1 0.107 0.003 * −0.061 0.093 0.023 0.527 0.028 0.441
%N2 −0.061 0.091 0.008 0.837 0.048 0.184 0.059 0.104
%N3 0.053 0.147 0.008 0.817 −0.075 0.04 −0.092 0.011

%REM −0.139 0.001 0.048 0.192 −0.007 0.855 0.013 0.722
TAI 0.225 <<0.01 −0.144 <<0.01 0.068 0.062 0.068 0.06

PSG: polysomnographic; AHI: Apnea–Hypopnea Index; OAHI: Obstructive AHI; OAI: obstructive apnea index; ODI: oxygen desaturation
index; #Awakenings: number of awakenings during total sleep time; WASO: wake after sleep onset; %N1: percentage of sleep spent in N1;
%N2: percentage of sleep spent in N2; %N3: percentage of sleep spent in N3; %REM: percentage of sleep spent in REM; TAI: total arousal
index. Those p-values below 10−4 appear as << 0.01. * Non-significant after Bonferroni correction. Statistically significant correlations
(p-value < 0.01 after Bonferroni correction) appear in bold.
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4.5. Diagnostic Ability Assessments

Table 4 shows the diagnostic performance obtained in the test set by each feature
individually, along with the classification results reached by each MLP model optimized
for the three severity thresholds.

Table 4. Diagnostic performance achieved in the test set by each feature selected and each MLP
optimized model for the binary classification in each severity threshold. Results are shown in terms
of sensitivity (Se %), specificity (Sp %), accuracy (Acc %) and AUC.

Threshold: AHI = 1 e/h

Feature/model Se Sp Acc AUC

VLF_f2m 44.5 72.3 53.9 0.605
LF_BE2 42.1 72.7 52.4 0.581
HF_PE 42.9 63.3 49.8 0.55

BW2_RPDiag 50.9 64.8 55.6 0.629
BW2_BE1 47.1 59.4 51.3 0.559

BWRes_Bmin 40.5 57.4 46.2 0.482
BWRes_BE3 41.5 57.4 46.9 0.513
MLP1Classic 52.3 59.4 54.7 0.6
MLP1Specific 76.3 38.3 63.4 0.627

Threshold: AHI = 5 e/h

Feature/Model Se Sp Acc AUC

VLF_f2m 62.5 72.2 70.8 0.749
LF_BE2 56.3 74.4 71.7 0.67
HF_PE 45.5 72.1 68.2 0.628

BW2_RPDiag 60.7 77.7 75.2 0.747
BW2_BE1 56.3 70.1 68 0.671

BWRes_Bmin 58.9 45.3 47.3 0.567
BWRes_BE3 47.3 58.4 56.8 0.569
MLP5Classic 50.9 86.2 81 0.774
MLP5Specific 62.5 84.2 81 0.791

Threshold: AHI = 10 e/h

Feature/Model Se Sp Acc AUC

VLF_f2m 63.8 76.7 75.6 0.784
LF_BE2 58 81.5 79.4 0.74
HF_PE 53.6 72.1 70.4 0.663

BW2_RPDiag 68.1 76 75.3 0.789
VLF: very low frequency; LF: low frequency; HF: high frequency; MLP: multi-layer perceptron; AHI: Apnea–
Hypopnea Index. The highest ACC and AUC for each severity threshold are highlighted in bold.

Regarding the individual performance, in the 1 e/h threshold, BW2_RPDiag obtained
the highest results in terms of Acc and AUC. For the 5 e/h threshold, again, BW2_RPDiag
showed a higher Acc than the other features selected, being only slightly surpassed by
VLF_f2m in terms of AUC. When considering 10 e/h as severity cutoff for binary classifica-
tion, LF_BE2 was the feature showing the higher Acc, but with a lower AUC and a more
unbalanced Se/Sp pair than BW2_RPDiag.

All the individual diagnostic yields were outperformed by the MLP models. The MLP
models formed by the OSA-specific region features obtained the highest results of this
study in terms of Acc and AUC in the 1 and 5 e/h thresholds. The MLP10Classic model was
the only one that achieved a higher diagnostic performance than the OSA-specific models
in terms of Acc and AUC at the cost of a strongly unbalanced Se/Sp pair and a very low Se
value (43.5%).
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5. Discussion

In this work, bispectral analysis of HRV signals, a process performed for the first time
in pediatric OSA research, was conducted herein. Features from bispectral HRV regions
based on the classic and OSA-specific frequency ranges were extracted to assess their
usefulness in the characterization and diagnosis of pediatric OSA. In both types of regions
separately, the selected features showed their complementarity, and the models constructed
achieved a high diagnostic performance. The OSA-specific region models generally outper-
formed the classic ones, highlighting the importance of these novel bispectral features in
the study of pediatric OSA.

5.1. Physiological Interpretation of the Features Selected

The averaged normalized bispectrum in the training set shown in Figure 2 serves as a
summary of the degree of phase coupling in the frequency range 0–0.4 Hz, covering all
the regions considered. The bispectral power is mainly concentrated under 0.02 Hz in the
no-OSA subjects, and then it spreads with severity to higher frequencies. This coupling
focus is markedly lower in the severe OSA group, as it can be observed in the amplification
depicted in each upper right corner of the representations from Figure 2. It reflects an
increase in the linearity and Gaussianity of HRV signals at very low frequencies due to
apneic events [29]. This shift to higher frequencies is also reflected in the selected feature
VLF_f2m. The values of VLF_f2m increase with OSA severity, as depicted in Figure 3a.
This means that the focus of coupling in the VLF range is displaced by apneic events,
generating higher HRV activity at higher frequencies [54]. This feature makes sense, as the
higher frequencies of the VLF range (0–0.04 Hz) overlap with the lower frequencies of BW2
(0.028–0.074 Hz), which has been defined as the frequency range related to the duration of
apneic events [27].

Inside this BW2 apneic-related region, BW2_RPDiag was one of the two features se-
lected. This parameter, as with VLF_f2m, showed an increasing tendency with OSA severity
(Figure 4a). As explained in the Methods section, RPDiag is intended to measure phase
coupling between the harmonic components (f 3 = 2f 1 and ϕ3 = 2ϕ1) of the HRV. The incre-
ment in BW2_RPDiag with OSA severity would indicate increasing nonlinear interactions
between those harmonics of OSA-affected children. Consequently, there is an increment in
less random/more periodic harmonics in HRV signals inside the BW2 region due to apneic
events. The increase in VLF_f2m and BW2_RPDiag with OSA severity is supported by the
correlation study, showing statistically significant correlations with all respiratory indices,
as well as with TAI. Furthermore, BW2_RPDiag generally obtained the highest individual
diagnostic performance. Taken together, these facts highlight the importance of analyzing
the BW2 bispectral region in the field of pediatric OSA, especially characterized through
our new proposed parameter RPDiag.

The entropy features also showed their usefulness to characterize the bispectral regions
of the HRV. Three entropies of the bispectral amplitude distribution were selected: BE1
inside the BW2 region, BE2 inside the LF region and BE3 inside BWRes. These parameters
measure the irregularity of the HRV from the bispectral distribution in each region, with
the inclusion of quadratic and cubic components scaling the differences in the bispectral
amplitude [29]. Bispectral distributions averaged for each severity group in these three
regions are shown in Figure A2 (LF region), A4 (BW2 region) and A5 (BWRes region).
In the case of BW2_BE1, a decrease with severity was observed, reflecting a reduction in
irregularity with apneic events in the HRV components linked to the frequencies of this
region. As a result of apneic events, it can be appreciated that the bispectral amplitude
in BW2 is more concentrated at low frequencies in the severe group (Figure A4d) and
starts to distribute more randomly to other frequencies as OSA decreases. This may be
due to the aforementioned increment in the less random harmonics in this range due to
OSA, leading to the reduction with severity experimented in BW2_BE1 (Figure 4b). In
the case of LF_BE2, this parameter also decreases with the severity of the disease, again
reflecting a reduction in irregularity with OSA in the HRV associated with this frequency
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region. Figure A2 points to the fact that the bispectral power distribution of no-OSA
subjects is more dispersed over the whole LF region and starts to concentrate at lower
frequencies as OSA severity increases. Interestingly, this parameter only showed negative
statistically significant correlation values when considering respiratory indices that include
hypopneas (AHI and OAHI). It seems that, as apneas are less frequent than hypopneas in
the database under study, the only effect of apneas is not enough to decrease the bispectral
HRV irregularity associated with the LF frequency range. Similarly, collective apneic effects
are better captured with the inclusion of the quadratic amplitude, suggesting that BE2 is
more accurate in detecting alterations in the bispectral distribution of LF as a result of
all apneic events. Regarding BWRes_BE3, Figure 4d shows that no-OSA, mild OSA and
moderate OSA subjects presented lower values than the severe OSA group. As it can be
seen in Figure A6, there is a higher bispectral power concentration around the respiratory
peak for the first three severity groups, and a lower concentration for severe OSA, whose
distribution spreads over other frequencies. The lower coupling around the respiratory
peak in the severe group makes sense as OSA results in a redistribution in the bispectral
power to frequency ranges related to apneic events, such as the BW2 region. These are
milder differences than those observed in BW2 and LF; therefore, an increase in HRV
irregularity due to OSA appears to be better captured through BE3 from BWRes.

In addition to the bispectral entropies, PE was also selected in the HF range. This
parameter showed a decreasing tendency with OSA severity (Figure 3c). As a reduction
in PE indicates that a process becomes less random [34], this result suggests that OSA
alterations lead to a reduction in the irregular behavior of the HRV phase along the HF
region. The fact that every entropy measure included in this study was selected, at least, in
one region highlights the importance of the entropy features when analyzing the bispectral
HRV distribution in pediatric OSA.

BWRes_Bmin was the remaining feature selected. The normalization applied over each
bispectral matrix allowed Bmin to estimate the minimum coupling within this region [46].
Despite the unclear tendency and the absence of differences obtained in this parameter
(Figure 4c), BWRes_Bmin was selected by the algorithm. This implies that BWRes_Bmin
contains information that is complementary to the other features selected in the OSA-
specific region feature subset.

Although BW1 showed its potential utility in the spectral analysis [27], none of
the features included in this region were selected by the FCBF algorithm a number of
times above the threshold established. This suggests that, when analyzing pediatric OSA
alterations in the HRV bispectrum, the assessment of the BW2 and BWRes regions would
be enough to characterize OSA effects. Similarly, the features related to bispectral moments
were not selected either, probably due to the redundancy when introducing RPDiag, which
seems to be more accurate in the characterization of apneic alterations.

5.2. Diagnostic Performance of the Bispectral Models

In this study, the information extracted from the bispectral HRV regions obtained an
overall high diagnostic performance both in the classic and OSA-specific bispectral region
models in the test set. The results obtained in the MLP models outperform the individual
diagnostic yield, highlighting the utility of the FCBF algorithm and MLP neural networks
to assess complementarity between features and to diagnose pediatric OSA, respectively.
When comparing classic against OSA-specific region models, the latter generally obtained
a higher performance. In the 1 e/h severity cutoff, despite the unbalanced Se/Sp pair,
MLP1Specific obtained a higher Acc (63.4% versus 54.7% from the MLP1Classic model) and a
higher AUC (0.627 versus 0.600). In the 5e/h threshold, the Acc obtained by MLP5Specific
and MLP5Classic was 81.0% in both cases, but with the specific model, showing a more
balanced Se/Sp, a higher AUC was found (0.774 versus 0.791). Finally, in the 10e/h severity
cutoff, MLP10Classic obtained the highest Acc and AUC from the study. However, the
Se/Sp pair was strongly unbalanced, with a very low Se value of 43.5%. Nevertheless, the
MLP10Specific model, at the cost of a very slight reduction in terms of Acc and AUC (89.3%
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versus 91.7%, and 0.847 versus 0.841, respectively), resulted in a more balanced Se/Sp pair
(66.7%/91.6%). These results reinforce the conclusion from our previous work [27] about
the importance of analyzing OSA-specific HRV frequency ranges whenever pediatric OSA
is under study.

5.3. Comparison with Previous Work

As far as we know, this is the first study where HRV bispectral analysis of pediatric
OSA was conducted. In this sense, a direct comparison of classification results with
other research studies using an HRV bispectral approach is not possible. However, HRV
analysis to diagnose pediatric OSA has been previously performed. A research group
carried out three classification studies [26,55,56], where they derived HRV features from
decreases in the amplitude fluctuations in the photoplethysmography signal. In their
studies, they included a population of 21 children (10 children with OSA and 11 controls)
and obtained an Acc ranging from 73.3% to 80%, Se from 62.5% to 87.5% and Sp from
71.45% to 85.7%, when considering HRV features only. The highest results obtained in the
present work outperform these diagnostic results in terms of Acc and Sp, with Se in the
same range. Nonetheless, the difference in the child population, along with the different
criteria followed to establish OSA, makes it difficult to perform a more comprehensive
comparison. The study developed by Cohen and de Chazal [57] was the first study
conducting an automated classification of children with OSA using only the HRV signal.
Notwithstanding, this classification was based on detecting apneic events, rather than
global classification of each subject, meaning a comparison with the diagnostic results of
the present study is not possible [57].

Thus, our previous study [27] is the only one that establishes a benchmark with which
we can compare the diagnostic performance reached in the present study. Furthermore, the
comparison of these results is direct as the database, the distribution of training/test sets
and the criterion of OSA diagnosis were the same. In the previous work, we computed the
individual diagnostic performances of each relative power (RP) from the power spectral
density in the VLF, LF, HF, BW1, BW2 and BWRes bands, and the LF/HF ratio too. Then,
we constructed two linear discriminant analysis (LDA) models to assess the joint diagnostic
yield of the relative powers in the classic bands versus the OSA-specific bands. Following
this methodology, the best classification outcomes obtained in terms of Acc and AUC using
1 e/h as the threshold for binary classification were 59.2% Acc (RPBW1 individually) and
0.592 AUC (LDA band of interest model). With 5 e/h as the severity threshold, the highest
results were 76.6% Acc (RPBW2) and 0.688 AUC (LDA band of interest model). Finally, in
the 10 e/h severity cutoff, the highest results reached were 82.8% Acc and 0.796 AUC (both
using the LDA band of interest model). It can be observed from Table 4 that, in the present
work, the best results achieved with the MLP optimized models surpassed, by far, those
achieved previously, and even some of the individual bispectral features eventually outper-
formed several of these results. It can be argued that the improvement in the diagnostic
outcomes may be mediated by the increased complexity of the classification algorithm. To
deal with this issue, and also for a fair comparison, we have included in Appendix B the
results obtained using the same classification methodology as in [27]. Table A1 shows the
classification results obtained including the features selected from each approach using
an LDA classifier. The results obtained with both the LDAClassic and LDASpecific models
also outperform the diagnostic performance obtained in the previous work, being only
surpassed in terms of Acc in the 1 e/h threshold. Thus, the diagnostic utility of the features
extracted from the bispectral HRV region analysis is clearly demonstrated, with the MLP
models reaching the highest diagnostic performance in the literature when using HRV
features exclusively to generate an automated classification of pediatric subjects into the
presence or absence of OSA and to estimate the severity grouping. Moreover, the higher
diagnostic performance reached by the bispectral analysis highlights the usefulness of this
analysis in the pediatric OSA context, which seems to be more accurate than traditional
frequency analysis to evaluate HRV alterations. The presence of HRV nonlinear dynamics
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demonstrated in Appendix C and captured through the HRV bispectrum estimation may
be behind this improvement over the traditional techniques.

Finally, although the results of the diagnostic performance from studies using physio-
logical data from different sources must be carefully compared, it is interesting to contrast
our results with the meta-analysis of a recently published systematic review [14]. In this
work, Gutiérrez-Tobal et al. gathered the pooled Se and Sp results from nineteen stud-
ies of machine learning methods to diagnose pediatric OSA that fulfilled their eligibility
criteria [14]. A meta-analysis was performed for the same OSA severity thresholds that
were employed here, which obtained an Se of 84.9%, 71.4% and 65.2% for the 1, 5 and
10 e/h cutoffs, respectively. Similarly, the meta-analysis obtained an Sp of 49.9%, 83.2%
and 93.1% for the 1, 5 and 10 e/h cutoffs, respectively. Table 4 shows that the MLP models
presented here for both classic and specific approaches obtained a diagnostic performance
in the same range for Sp in the 5 and 10 e/h cutoffs, and also MLP10Specific obtained
similar Se results. It is worth noting that, among the studies included in the meta-analysis,
none of them considered HRV signals. Furthermore, the sample size from seventeen out
of nineteen studies included in the systematic review was markedly smaller than the
databases analyzed here, only being surpassed by the cohort included in the studies of
Hornero et al. [42] and Vaquerizo-Villar et al. [58]. Therefore, these considerations along
with the similar diagnostic performance reached in the 5 and 10 e/h severity thresholds
reinforce the support for the use of HRV bispectral analysis as a potential alternative to
overnight PSG for pediatric OSA diagnosis.

5.4. Limitations and Outlook

Despite the high diagnostic performance obtained with the methodology followed in
this study, some limitations deserve mention. First, although the sample size included is
markedly large, accounting for 1738 overnight HRV recordings, some imbalance between
severity groups is apparent. In this sense, an increase in the population included in future
studies, trying to balance the severity groups’ distribution, would be desirable to raise the
robustness and generalizability of our results.

Additionally, none of the features extracted from the region bound by BW1 frequencies
(0.001–0.005 Hz) were selected. This frequency range has been linked to sleep fragmentation
due to OSA, and its usefulness in spectral analysis has been demonstrated [27]. Thus, a
combination of features from this region with features derived from different approaches
would be performed in future studies to assess if BW1 OSA alterations are really reflected
in bispectral analysis, and also if they contain non-redundant information on the features
presented here.

A previous study performing bispectral HRV analysis in the adult OSA context only
analyzed the non-redundant bispectral region [30]. In this sense, despite the well-known
differences between children and adults in the OSA context, the high diagnostic perfor-
mance achieved here in analyzing classic and OSA-specific bispectral regions serves as
a motivation to search for adult OSA-specific frequency ranges. Consequently, a replica-
tion of the methodology carried out here to extract OSA-specific regions in adults and its
analysis in the frequency and bispectral domains is one of our future research aims.

Additionally, the highly satisfactory results achieved illustrate the utility of bispectral
HRV analysis to characterize and diagnose pediatric OSA, outperforming the previous
spectral analysis diagnosis yield [27]. Therefore, the binary classification performed serves
as a first step, and further explorations of more complex predictive models, as well as
estimation of the AHI (regression), instead of binary classification, are also some of our
future research aims.

Finally, despite the high diagnostic performance achieved here through bispectral
analysis and the MLP models constructed, the promising results obtained by deep learning
techniques in healthcare issues in recent years highlight the potential utility of these
methods to automate the diagnosis of pediatric OSA [14]. Accordingly, in trying to increase
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the diagnostic performance, the inclusion of deep learning methods in the pediatric OSA
context is a future research need.

6. Conclusions

To the best of our awareness, this is the first work where bispectral HRV analysis has
been conducted to characterize and diagnose pediatric OSA. Our methodology allowed
us to obtain two feature subsets, one containing information regarding bispectral regions
based on classic HRV frequency ranges, and the other one with OSA-specific bispectral
regions. Those subsets were formed by features containing complementary information
about alterations in the non-Gaussianity, nonlinearity and irregularity behavior of the
HRV due to OSA. Among the features selected, a novel bispectral measure presented here,
RP_Diag, showed its utility, generally achieving the highest individual diagnostic perfor-
mance as well as the highest correlations with polysomnographic indices. Furthermore,
the MLP models outperformed the previous results of diagnostic performance based on
spectral analysis, with the MLP1Specific, MLP5Specific and MLP10Classic models achieving
the highest diagnostic yield from the study for each severity cutoff. These results highlight
the usefulness of bispectral HRV analysis in the pediatric OSA context, especially when
analyzing bispectral regions bounded by OSA-specific frequency ranges. Thus, we con-
clude that information extracted from HRV bispectra allows for the characterization and
diagnosis of pediatric OSA, leading us to propose this approach as a potential alternative
to PSG.
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Appendix A. Determination of HRV OSA-Specific Frequency Ranges and Averaged
Bispectral Regions in the Training Set

The classic HRV spectral frequency ranges present some limitations when analyzing
alterations in the autonomic nervous system as a result of pediatric OSA. This is the main
motivation that led to us to the search of pediatric HRV OSA-specific frequency ranges in a
recent work [27]. To perform the extraction of those spectral bands, we first established four
severity groups based on the AHI. The HF frequency range, also known as the respiratory
frequency band, is strongly modulated by age. For this reason, the search was separated in
two different analyses to extract bands of interest based on the power spectral density. First,
we performed an analysis over the 0–0.15 Hz frequency range, as it should not be altered by
age [27]. The seek was performed through the evaluation of statistical differences (Mann–
Whitney U test), frequency by frequency, between the amplitude of power spectral densities
along this range for each severity group. Those frequency bands where, at least, two of the
statistical tests showed statistically significant differences (p-value < 0.01 after Bonferroni
correction) were selected as OSA-specific frequency ranges. This methodology allowed us
to find two bands of interest, termed BW1 (0.001–0.005 Hz) and BW2 (0.028–0.074 Hz).

The second analysis performed was oriented to consider age modulation in the respira-
tory range. In this sense, age plays an important role in the location of the respiratory peak
within HF (0.15–0.40 Hz) [59,60], meaning the assessment was an adaptive individual anal-
ysis. We first located the individual maximum amplitude inside the HF range. Therefore, as
it was explained in the Discussion section in [27], a frequency range of 0.04 Hz around this
respiratory peak was enough to assess pediatric OSA alterations in this adaptive individual
frequency band, which we termed BWRes. A complete and detailed explanation of the
whole methodology to extract those HRV OSA-specific frequency bands of interest can be
found in the Methods section from our previous study [27].

Thus, now that the extraction of HRV OSA-specific frequency ranges has been de-
scribed, below, we include the averaged bispectral distribution for each severity group,
bounded by both classic and OSA-specific frequencies. Figures A1–A6 show the 3D rep-
resentation for the VLF, LF, HF, BW1, BW2 and BWRes regions, respectively. The x and y
axes from the BWRes region cannot be represented in terms of frequency, as it changes for
each subject. That is why they appear in terms of the number of samples for this region.
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Appendix B. Diagnostic Performance of Bispectral Region Models with a Linear
Discriminant Analysis Classifier

To perform the main automated classification analysis of this study, we optimized the
MLP models for each severity threshold (results available in Table 4). However, for com-
parison purposes, we have included in this appendix the diagnostic performance achieved
by each optimized feature subset following the same methodology as in our previous
work [27]. To this effect, the diagnostic performance of the BISPClassic and BISPSpecific fea-
ture subsets was evaluated through two models based on LDA (LDAClassic and LDASpecific
models, respectively). Both classifiers were trained in the training set for each severity
threshold, and the diagnostic performance was evaluated in the test set. Table A1 shows
the results achieved by each model, along with the results from our previous work [27]. It
can be observed that, as it is commented on in the Discussion section, the new diagnostic
performance surpassed our previous classification results in terms of Acc and AUC in
almost all the parameters. Only the individual Acc in 1 e/h for RPBW1 outperformed the
LDA results presented here, but with a lower AUC.

Table A1. Diagnostic performance in the test set achieved following a spectral and a bispectral approach. The individual
performances correspond to each relative power extracted in our previous work. Joint performance was assessed by
constructing LDA classifiers.

Feature/Model
AHI Threshold = 1 e/h AHI Threshold = 5 e/h AHI Threshold = 10 e/h

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

RPVLF 68.9 31.6 56.3 0.518 33.0 65.0 60.2 0.456 40.6 64.2 62.1 0.495

Previous work
(frequency analysis approach)

RPLF 43.5 62.9 50.1 0.557 52.7 58.4 57.6 0.590 59.4 58.4 58.5 0.666
RPHF 35.5 71.9 47.8 0.523 39.3 68.1 63.8 0.540 43.5 76.7 73.7 0.605
LF/HF 37.7 70.3 48.7 0.540 45.5 66.8 63.7 0.567 49.3 70.8 68.8 0.643

RPBW1 66.3 45.3 59.2 0.559 65.2 54.0 55.6 0.621 69.6 52.3 53.9 0.624
RPBW2 32.7 78.1 48.1 0.591 45.5 82.0 76.6 0.670 58.0 78.2 76.4 0.751

RPBWRes 45.5 56.6 49.3 0.532 44.6 64.0 61.2 0.571 49.3 64.0 62.6 0.628

LDA Classic
Bands 25.7 81.3 44.5 0.559 46.4 72.2 68.4 0.633 50.7 75.3 73.1 0.685

LDA Bands
of Interest 42.5 72.3 52.6 0.592 50.0 80.9 76.4 0.688 63.8 84.7 82.8 0.796

Present work
(bispectral analysis approach)

LDAClassic 30.1 81.3 47.4 0.601 53.6 85.3 80.6 0.779 66.7 89.7 87.6 0.847
LDASpecific 37.9 77.3 51.3 0.615 63.4 82.8 79.9 0.792 71.0 85.9 84.5 0.842

RP: relative power; VLF: very low frequency; LF: low frequency; HF: high frequency; LDA: linear discriminant analysis; AHI: Apnea–
Hypopnea Index. The highest accuracy and AUC in each severity threshold are highlighted in bold.

Appendix C. Surrogate Data Approach

Appendix C.1. Testing for Nonlinearities

Despite the previous literature and evidence supporting the utility of nonlinear HRV
analysis in the pediatric OSA context commented on in the Introduction section, testing
the presence of nonlinearities in our database can increase the rationale in the selection of
bispectral analysis over other traditional methods. To this effect, a surrogate data approach
can be performed, which allows for these types of test [61]. The surrogate data generation
techniques to test nonlinearities construct surrogate data from the original signal, preserv-
ing the power spectrum and data distribution while removing nonlinear properties [61,62].
After seeking for different surrogate data generation techniques, we decided to implement
the iterative amplitude-adjusted Fourier transform method (IAAFT) [61,63], which is one
of the most popular solutions [61].

Testing for nonlinearities with the IAAFT method first implies constructing a set of
surrogate data. We performed this test over four randomly selected subjects from the
training set, each one belonging to an OSA severity group (no-OSA: AHI < 1; mild OSA:
1 ≤ AHI < 5; moderate OSA: 5 ≤ AHI < 10; severe OSA: AHI ≥ 10). Thus, we generated
100 realizations of surrogate data from the original selected HRVs. The null hypothesis
established was that the data represent a linear process, with all surrogate data being
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consistent with this hypothesis [61,63]. The next step was to compute a nonlinear measure
for both original and all surrogate data and rank them in numerical order. We selected the
Lempel-Ziv complexity (LZC) as a nonlinear measure that evaluates the generation rate of
patterns present in a data sequence [64]. If the null hypothesis is true, the nonlinear measure
evaluated in the original data should be indistinguishable from the measure computed for
the surrogates [63]. However, for a two-sided test, if the nonlinear parameter is lower or
higher than the rest of the measures computed in the surrogates, the null hypothesis can be
rejected with a p-value < 0.02, and the existence of statistically significant nonlinearities
in the original signal can be ensured. We confirmed that it occurs in the four HRV signals
included, which means that the presence of nonlinearities in HRV signals under our study
conditions has been demonstrated.

Appendix C.2. Bispectrum with Surrogate

The surrogate data method can also be employed to check for the significance of
bispectral peaks. Although peaks derived from frequency coupling alone should not
appear in the bispectrum computation, sometimes they appear mixed with true peaks
resulting from the frequency and phase coupling [62]. To solve this problem, the bispectrum
with surrogate (BWS) computation method can be utilized [62]. Computing a bispectrum
with and without the BWS technique and comparing these results allow assessing if the
main peaks present in our study can be considered as significant.

The BWS technique is based on surrogate data. Thus, following the approach estab-
lished in the subsection above, we performed BWS computation over the same four HRVs
from the different OSA severity groups. Once the 100 realizations of surrogate data for
each HRV were computed, we estimated the bispectrum for the original HRV and also
for each surrogate. Then, over the surrogate set, we computed the mean and standard
deviation of the bispectral magnitude, obtaining 100 means and standard deviations [62].
Based on these statistics, we constructed a 95% statistical threshold as the mean plus two
times the standard deviation for each surrogate and selected the maximum threshold value
as the threshold to apply over the original bispectrum estimation [62]. Any bispectral
peak present in the original bispectrum estimation above the threshold computed was
considered as significant, meaning BWS estimations were constructed canceling the bispec-
tral magnitude values below the threshold. The next figures (Figures A7–A10) show the
original bispectrum estimation along with the BWS estimation represented in 2D and 3D
for each severity group.

The first outcome that can be appreciated is that the original bispectrum estimations
(Subfigures a and c from each figure) present the main bispectral peak as well as some
smaller peaks to a greater or lesser degree. After applying the BWS method (Subfigures b
and d), most of these spurious peaks disappeared, with only the main peaks remaining,
which are considered as significant [62]. In the Discussion section, we identified and
discussed three phase coupling peaks: the VLF peak, the HF respiratory peak and a shift
to the BW2 region range in the presence of OSA. For the no-OSA and mild OSA children
(Figures A7 and A8), the bispectral power is mainly concentrated around the VLF range,
and a shift coupling is presented to a slight degree in a moderate OSA subject (Figure A9)
and markedly in a severe OSA subject (Figure A10). For severe OSA, in fact, the main
bispectral peak moved to the OSA-specific BW2 region. These results are in accordance
with the conclusions extracted in the Discussion section. Another remaining coupling peak
after BWS correction that deserves mention is the respiratory peak (typically inside the
HF region). This peak can be appreciated in Figures A7 and A8. However, it is absent
in the moderate and severe OSA children, supporting our original conclusions about the
coupling reduction around the respiratory peak and the redistribution of the bispectral
power with OSA severity, especially in the severe group. Therefore, the results obtained
through the BWS method support our original conclusions, increasing the robustness of
our results.
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