
Computers in Biology and Medicine 129 (2021) 104167

Available online 7 December 2020
0010-4825/© 2020 Elsevier Ltd. All rights reserved.

Bispectral analysis of overnight airflow to improve the pediatric sleep 
apnea diagnosis 

Verónica Barroso-García a,b,*, Gonzalo C. Gutiérrez-Tobal a,b, Leila Kheirandish-Gozal c, 
Fernando Vaquerizo-Villar a,b, Daniel Álvarez a,b,d, Félix del Campo a,b,d, David Gozal c, 
Roberto Hornero a,b 

a Biomedical Engineering Group, University of Valladolid, Valladolid, Spain 
b CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain 
c Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA 
d Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain   

A R T I C L E  I N F O   

Keywords: 
Adaptive band 
Airflow 
Bispectrum 
Children 
Obstructive sleep apnea 

A B S T R A C T   

Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight 
polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler 
alternatives are being intensively sought. In this study, bispectral analysis of overnight airflow (AF) signal is 
proposed as a potential approach to replace PSG when indicated. Thus, our objective was to characterize AF 
through bispectrum, and assess its performance to diagnose pediatric OSA. This characterization was conducted 
using 13 bispectral features from 946 AF signals. The oxygen desaturation index ≥3% (ODI3), a common clinical 
measure of OSA severity, was also obtained to evaluate its complementarity to the AF bispectral analysis. The fast 
correlation-based filter (FCBF) and a multi-layer perceptron (MLP) were used for subsequent automatic feature 
selection and pattern recognition stages. FCBF selected 3 bispectral features and ODI3, which were used to train a 
MLP model with ability to estimate apnea-hypopnea index (AHI). The model reached 82.16%, 82.49%, and 
90.15% accuracies for the common AHI cut-offs 1, 5, and 10 events/h, respectively. The different bispectral 
approaches used to characterize AF in children provided complementary information. Accordingly, bispectral 
analysis showed that the occurrence of apneic events decreases the non-gaussianity and non-linear interaction of 
the AF harmonic components, as well as the regularity of the respiratory patterns. Moreover, the bispectral 
information from AF also showed complementarity with ODI3. Our findings suggest that AF bispectral analysis 
may serve as a useful tool to simplify the diagnosis of pediatric OSA, particularly for children with moderate-to- 
severe OSA.   

1. Introduction 

Obstructive Sleep Apnea (OSA) is a frequent respiratory condition 
that is present in 5% of children aged 2–18 [1]. Affected children 
manifest recurrent apnea and/or hypopnea episodes during sleep [2,3]. 
In children, an apnea reflects complete cessation of airflow during at 
least 2 respiratory cycles, while a hypopnea is a significant reduction of 
airflow for two or more breaths and accompanied by a blood oxygen 
hemoglobin desaturation ≥3% or an electroencephalographic arousal 
[3]. Due to the serious consequences that OSA may cause in pediatric 
subjects, such as cognitive and behavioral deficits and cardiovascular 

alterations [1], it is of paramount importance to reach an early diagnosis 
and enable access to treatment. 

Overnight polysomnography (PSG) is the standard method used by 
physicians to diagnose pediatric OSA [4]. This test consists in moni-
toring the child during sleep using various body sensors to record mul-
tiple physiological signals, such as photoplethysmography (PPG), 
electrocardiogram (ECG), electroencephalography (EEG), oximetry 
(SpO2), or airflow (AF), among others [4]. These signals are qualita-
tively assessed by physicians to obtain the apnea-hypopnea index (AHI: 
number of apneic and hypopneic events per hour of sleep) and deter-
mine OSA severity [2,5]. Nonetheless, PSG is a very complex and 
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time-consuming test, as it requires spending the night in a sleep labo-
ratory and subsequent evaluation of all the physiological data acquired 
[6]. Moreover, the required facilities to perform complete PSG are not 
always available, thereby leading to long waiting lists [6]. In order to 
overcome these drawbacks, possible alternatives to PSG have been 
evaluated. In this regard, it has been found that home respiratory pol-
ygraphy (HRP) could be useful to diagnose pediatric OSA when PSG is 
not available [7]. In addition, other simpler approaches that involve 
fewer channels than PSG and HRP have also been assessed. These ap-
proaches, based on the analysis of a reduced set of physiological signals, 
could help to diagnose the disease and reduce the complexity and 
intrusion of the diagnostic test. Thus, those signals involved in the PSG, 
such as ECG, PPG, SpO2 or AF, are commonly used to this purpose 
[8–15]. 

In this study, we planned the automated analysis of the single- 
channel AF signal to aid in pediatric OSA diagnosis. The AF signal can 
be obtained using a type IV portable device that incorporates thermistor 
[16,17]. These devices just use one or two sensors to record one or two 
physiological parameters, so in addition to simplifying the diagnostic 
test it would be less uncomfortable for children. Moreover, type IV de-
vices can be used at patient’s home, which would streamline diagnosis 
and reduce waiting lists. According to the definition of OSA, AF shows 
respiratory alterations due to apneic and hypopneic events [3], leading 
to changes that can be measured in time- (amplitude-reduction) and 
frequency- (spectrum-modification) domains, as well as in its phase [3, 
13–15,18]. This makes AF analysis a promising approach to simplify the 
diagnosis and potentially obviate the need for PSG. In addition, 3% 
oxygen desaturation index (ODI3) has been computed in our study. This 
index is directly obtained from the SpO2 signal [19], and is clinically 
used to diagnose OSA when PSG availability is limited [20]. However, it 
is well-known that this index underestimates the severity of OSA [21, 
22]. In this regard, we also propose to evaluate the complementarity of 
the ODI3 with the AF information. 

The recurrent presence of respiratory events during sleep leads to 
modifications in AF spectrum [18]. Consequently, AF spectral analysis 
has been widely used in the diagnosis of OSA [14,15,18,23]. This 
analysis is usually carried out by means of power spectral density (PSD). 
However, conventional methods of PSD estimation have several limi-
tations, such as the assumption of stationarity and linearity [24,25]. AF 
is a dynamic, non-linear and non-stationary signal [13]. Consequently, a 
regular spectral analysis may not provide sufficient information in the 
pediatric OSA context. In contrast, bispectrum analysis can reveal 
changes of linearity and stationarity [26]. Moreover, this method pre-
serves both the amplitude and phase information of the signal [12,26, 
27]. This property may allow for detection of dependency relationships 
between different frequencies that are generated by the occurrence of 
respiratory events, which would not be possible with a conventional 
spectral analysis [12]. Bispectrum has shown its usefulness to charac-
terize other OSA-related biomedical signals, such as SpO2 [12], EEG 
[28], and ECG [29]. However, this is the first time that bispectrum is 
used to characterize AF in children and estimate their AHI. Based on the 
aforementioned considerations, our starting hypothesis is that the bis-
pectrum of AF contains OSA-related information. Thus, our main 
objective is to characterize AF by means of bispectrum, as well as to 
assess its potential usefulness to determine the presence and severity of 
OSA in children. In addition, we evaluate the complementarity between 
AF and the ODI3 as a secondary objective. In order to reach these goals, 
we firstly extracted bispectral features from AF, as well as ODI3 from 
oximetry. Then, the fast correlation-based filter (FCBF) algorithm was 
applied to select a subset of relevant and non-redundant features. 
Finally, a multi-layer perceptron (MLP) neural network was trained 
using this optimum feature subset in order to estimate the AHI. 

2. Subjects and signals 

This study involves 946 subjects aged 0–13 years old. All of them 

were referred to the Pediatric Sleep Unit at the Comer Children’s Hos-
pital of the University of Chicago (Chicago, IL, USA) due to clinical OSA 
suspicion. The informed consents of all children caretakers were ob-
tained, and the Ethics Committee of the Comer Children’s Hospital 
approved the protocol (#11-0268-AM017, #09-115-B-AM031, and 
#IRB14-1241). 

All subjects underwent PSG using a digital polysomnographic system 
(Polysmith, Nihon Kohden America Inc., Irvine, CA, USA). They were 
diagnosed by medical specialists following the American Academy of 
Sleep Medicine (AASM) rules to score apnea and hypopnea events [3]. 
Thus, based on the analysis of the PSG signals, AHI was obtained to 
determine the severity of the disease according to the cut-offs commonly 
used in children: 1, 5, and 10 events/h [2,13,30,31]. Accordingly, the 
range of AHI < 1 event/h was considered no-OSA, while the ranges 1 
event/h ≤ AHI < 5 events/h, 5 events/h ≤ AHI < 10 events/h, and AHI 
≥ 10 events/h, were designated as mild, moderate, and severe OSA, 
respectively. 

Children were randomly allocated into two groups: training and test 
sets. Table 1 displays the clinical and demographic data of the children 
involved in our study. The continuous variables (age, body mass index, 
and AHI) did not pass the Lilliefors normality test. Thus, the non- 
parametric Mann-Whitney U test for continuous variables (age, body 
mass index, and AHI) and the Fisher’s exact test for categorical variables 
(gender and severity groups) were applied, showing no statistically 
significant differences (p-value > 0.01) in any of these parameters be-
tween the training and test sets. 

AF recordings were acquired by means of a thermistor during PSG. 
Those recordings lasting less than 3 h were excluded from the study [13, 
32]. 946 signals of AF were preprocessed for resampling (100 Hz), 
removing artifacts, and standardization [13,14]. The ODI3 was obtained 
from the corresponding 946 SpO2 signals. These signals were also pre-
processed for resampling (25 Hz) and artifact removal [12,31]. Fig. 1a 
and Fig. 1b show an example of AF signal before and after the pre-
processing stage, respectively. As can be seen, the artifacts (signal loss: 
0–1.2 min; noise: 4.3–4.7 min) are removed after AF preprocessing. The 
raw and preprocessed SpO2 signals are also shown in Fig. 1c and Fig. 1d, 
respectively. It can be observed that its artifacts (0–0.6 h and around 2.6, 
3.6, 4.5, and 7.8 h) are eliminated in the preprocessing stage. 

3. Methodology 

In order to obtain the ODI3 of each of the study subjects, the total 
number of oxygen desaturations ≥3% from preceding SpO2 baseline was 
divided by the total number of recording hours [12,19]. 

Then, we carried out a methodology in 3 stages. First, the AF bis-
pectrum was estimated and 13 bispectral features were extracted to 
characterize it. Afterwards, a selection stage was applied using FCBF 
[33]. Finally, a MLP trained with the selected features was used to es-
timate the AHI. 

Table 1 
Clinical and demographic data of the children involved in the study.   

All Training set Test set 

Subjects (n) 946 570 376 
Age (years) 6 [6] 6 [5] 6 [6] 
Males (n) 584 (61.7%) 339 (59.5%) 245 (65.2%) 
BMI (kg/m2) 17.9 [6.2] 17.7 [6.7] 18.1 [6.0] 
AHI (events/h) 3.8 [7.8] 4.2 [8.3] 3.3 [6.4] 
AHI < 1 (n) 163 (17.2%) 91 (16.0%) 72 (19.1%) 
1 ≤ AHI < 5 (n) 386 (40.8%) 223 (39.1%) 163 (43.4%) 
5 ≤ AHI < 10 (n) 172 (18.2%) 111 (19.5%) 61 (16.2%) 
AHI ≥ 10 (n) 225 (23.8%) 145 (25.4%) 80 (21.3%) 

Data presented as median [interquartile range] or n (%). 
BMI = body mass index, AHI = apnea-hypopnea index. 
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3.1. Bispectrum estimation 

Bispectrum is a high order spectrum (HOS) based on the 3rd order 
cumulant, i.e., on the spectral decomposition of skewness of time series 
histogram [12,26]. It is represented as the matrix that results of 
computing the 2-dimensional Fourier transform of the 3rd order cumu-
lant of the signal by means of the following equation [12,26,34]: 

B
(
fx, fy

)
= X(fx)⋅X

(
fy
)
⋅X*( fx + fy

)
, fx, fy = 0, ..., fN , (1)  

where fx and fy are the frequencies associated to the x and y axes of the 
bispectral matrix, fN is the Nyquist frequency (sampling rate/2), X(f) is 
the discrete Fourier transform (DFT), and each point (fx, fy) of the bis-
pectral matrix indicates the phase coupling degree between frequency 
components [26]. 

As bispectrum preserves the amplitude and phase information, it is 
used to analyze interactions between patterns of a signal [12,26,28]. 
Moreover, bispectrum also allows to detect changes in the gaussianity of 
a time series [26,27]. In this regard, bispectral values = 0 indicates that 
the signal components are normally distributed (gaussian components), 
while a bispectrum ∕= 0 indicate that the process have non-gaussian 
components [26]. In addition, bispectrum is able to detect deviations 
of linearity of a signal by means of the phase coupling between its fre-
quency components [27,28]. The phase coupling between 3 harmonic 
components of frequencies f1, f2, and f3 and phase angles ɸ1, ɸ2, and ɸ3 is 
defined as f3 = f1 + f2 and ɸ3 = ɸ1 + ɸ2 [26]. Thereby, the existence of 
phase coupling indicates that there are non-linear dependency re-
lationships between harmonic components of the signal [26]. 

As bispectrum has symmetry properties, the computation of a 
triangular region is sufficient to completely describe it [26,27]. This area 
is known as the non-redundant computational region of the bispectrum 
and satisfies that fx ≥ 0, fy ≥ fx, and fx + fy ≤ fN [26]. Regarding the DFT 
computation, it implies the use of a temporal window that is moved 
along the signal to collect the frequency variation at each instant of time 
[35]. The window length is a parameter that affects the temporal and 
frequency resolution, so a compromise should be established between 
both resolutions [24]. In the case of pediatric OSA, apneic events last at 
least 2 respiratory cycles [3]. Therefore, a 30-s window length would 

assure that the segment contains sufficient frequency information about 
apneic events, without losing temporal resolution. Thus, a Hamming 
window of 212 samples (≈30-s) with 50% overlap and 213 points of DFT 
was used in our study to obtain the bispectrum. 

Once the bispectrum was computed, it was normalized by dividing 
the bispectral matrix by the total bispectral power (BP) [26]: 

BN
(
fx, fy

)
=

B
(
fx, fy

)

BP
, fx, fy = 0, ..., fN , (2)  

where BP is computed as the sum of all magnitudes of the complete 
bispectrum: 

BP =
∑fN

fx ,fy=0

⃒
⃒B
(
fx, fy

)⃒
⃒. (3) 

This normalization allows the magnitude values of the bispectrum to 
be between 0 and 1 [26], thus minimizing the inter-individual differ-
ences related to particular physiological features other than OSA [36]. 
Moreover, this normalization allows to measure the phase coupling 
degree between frequencies [26]. 

3.2. Feature extraction 

It is well-known that the respiratory rate in children decreases from 
birth to adolescence [37]. Therefore, we used a bispectral band adapted 
to the respiratory rate of each child. In order to estimate it, we first 
located the pair of frequencies fxmax and fymax for the maximum ampli-
tude value of bispectrum. We located the point of maximum bispectral 
power, which corresponds to the peak of normal respiration. Afterwards, 
a bandwidth of 0.15 Hz was established [38,39]. Thereby, the resulting 
adaptive bispectral band (AB) for each subject was a square region of AF 
bispectrum defined by fx ∈ [fxmax – 0.075 Hz, fxmax + 0.075 Hz] ∩ fy ∈

[fymax – 0.075 Hz, fymax + 0.075 Hz]. 
Once the adaptive bispectral band (AB) was obtained from each of 

the 946 subjects, 13 bispectral features were extracted. 

3.2.1. Features based on the amplitude of bispectral band  

- Maximum amplitude (Bmax). It is the maximum magnitude value 
located in the adaptive band [40]: 

Bmax = max
(⃒
⃒BN

(
fx, fy

)⃒
⃒

fx ,fy∈AB

)
. (4)    

- Minimum amplitude (Bmin). It is the minimum value of the bispectral 
band: 

Bmin = min
(⃒
⃒BN

(
fx, fy

)⃒
⃒

fx ,fy∈AB

)
. (5)    

- Total power (Btotal). This feature allows to measure the deviation of 
gaussianity [41]. Btotal corresponds to the bispectral power of the 
adaptive band and it is obtained as the sum of magnitudes contained 
in this band [41]: 

Btotal =
∑

fx ,fy∈AB

⃒
⃒BN

(
fx, fy

)⃒
⃒. (6)   

Previous studies based on the spectral analysis of AF have shown that 
children without OSA concentrate higher spectral power close to normal 
respiratory band [14,18]. Similar to the spectral analysis, it was ex-
pected to find lower bispectral amplitudes and lower values of Bmax, 
Bmin, and Btotal in the adaptive band of the subjects with OSA. 

Fig. 1. Airflow signal (AF): (a) before and (b) after the preprocessing stage, and 
blood oxygen saturation signal (SpO2): (c) before and (d) after the pre-
processing stage. 
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3.2.2. Features based on the entropy of bispectral distribution  

- Bispectral entropies of first (BE1), second (BE2), and third (BE3) 
order. These features measure the irregularity of the signal [12,26]. 
BE1, BE2, and BE3 are calculated as the Shannon’s entropy of the 
amplitude, the quadratic amplitude, and the cubic amplitude of the 
bispectral band, respectively [12,29]: 

BEi = −
∑

j
pj⋅log

(
pj
)
, j = 1, 2, ..., J, (7)  

where i is the order of entropy (i = 1, 2 or 3), J is the number of bins, 
and p is the distribution of amplitudes in the adaptive band: 

pj =

⃒
⃒BN

(
fx, fy

)
|
i

∑

fx ,fy∈AB

⃒
⃒BN

(
fx, fy

)⃒
⃒i
, i = 1, 2, 3. (8)    

- Phase entropy (PE). PE quantifies the irregularity of the phase in the 
bispectral band [12]. Thereby, the Shannon’s entropy is applied to 
the normalized distribution of the phase angles of this band [12,26]: 

PE = −
∑

n
p(ψn)⋅log[p(ψn) ] , n = 1, 2, ...,N, (9)  

where N is the number of bins and p(ѱ) is the distribution of the 
phase angles [12,26]: 

p(ψn) =
1
L

⋅
∑

fx ,fy∈AB
Ind

[

ϕ
(
BN

(
fx, fy

) )
∈ ψn

]

, (10)  

where L is the number of points of the adaptive band, ɸ is the phase 
angle, ѱ is the range of histogram bins: 

ψn =

{

ϕ
⃒
⃒
⃒
⃒ − π +

2⋅π⋅n
N

≤ ϕ < − π +
2⋅π⋅(n + 1)

N

}

, (11)  

and Ind[⋅] is the indicator such that [26]: 

Ind =

{
1 : ϕ

(
BN

(
fx, fy

) )
∈ ψn

0 : otherwise . (12)   

It has been observed that AF signal presents higher irregularity in 
children with OSA [13,14]. Due to apneic events introduce variations of 
amplitude, phase, and frequency components in AF [13,14,18], higher 
values of BE1, BE2, BE3, and PE are expected in presence of OSA. 

3.2.3. Features based on the bispectral band moments  

- Sum of logarithmic amplitudes (H1), sum of logarithmic amplitudes 
of diagonal elements (H2), and spectral moments of first and second 
order of amplitudes of diagonal elements (H3 and H4, respectively). 
These features allow to quantify the non-linearity of a signal and are 
calculated based on the amplitude values contained in the adaptive 
band (AB) and in its diagonal (ABdiag) [25,29]: 

H1 =
∑

fx ,fy∈AB
log

(⃒
⃒BN

(
fx, fy

)⃒
⃒
)
. (13)  

H2 =
∑

fk∈ABdiag

log
(
|BN(fk, fk)|

)
. (14)  

H3 =
∑

fk∈ABdiag

k⋅log
(
|BN(fk, fk)|

)
. (15)  

H4 =
∑

fk∈ABdiag

(k − H3)
2⋅log

(⃒
⃒BN

(
fk, fk

)⃒
⃒
)
. (16)   

AF signals of children without OSA are expected to have their bis-
pectral content more concentrated in the normal breathing band. This 
would imply greater phase coupling between the frequency components 
of this band and, therefore, greater non-linearity [29]. Consequently, 
higher values of H1, H2, H3, and H4 are expected in the subjects. 

3.2.4. Features based on the weighted center of bispectrum (WCOB)  

- WCOB. Bispectral weighted center is defined as an index to detect the 
focus of the adaptive band [27]. The weighted center in this band can 
be calculated by assigning a weight to each of its bispectral compo-
nents [42]. Thus, WCOB is a 2-dimensional vector whose compo-
nents are defined by [27,42]: 

fm1 =

∑

fx ,fy∈AB
fx⋅BN

(
fx, fy

)

∑

fx ,fy∈AB
BN

(
fx, fy

) . (17)  

fm2 =

∑

fx ,fy∈AB
fy⋅BN

(
fx, fy

)

∑

fx ,fy∈AB
BN

(
fx, fy

) . (18)   

It provides a summary of the interaction between frequency com-
ponents [42]. The WCOB values are related to the peaks of the bispec-
trum [42]. Particularly, a WCOB decrease (lower fm1 and fm2 values) is 
associated with activities in low frequency [42]. Thereby, subjects 
without OSA are expected to concentrate the bispectral content in the 
normal breathing band (higher bispectral peak). Consequently, it is 
expected that their WCOB is centered in this band, whereas in subjects 
with OSA it is shifted towards frequency components associated with 
apneic events. 

3.3. Feature selection 

The method used in this study to apply the selection stage was FCBF 
[33]. This algorithm has been widely used in the diagnosis of pediatric 
OSA [12,13,31,43]. Based on the symmetric uncertainty (SU) [33], 
FCBF allows to find an optimal subset of relevant and non-redundant 
features, thus reducing the high dimensionality and complexity of pre-
dictive models [44]. Moreover, it is a filter-type feature selection tech-
nique, so it provide results that do not depend on posterior analysis [44]. 

In order to obtain a stable and generalizable subset of features, FCBF 
was applied to 1000 bootstrap replicates from the training group [45]. 
The average significance, defined as the sum of the number of times the 
features are selected divided by the total number of input features, was 
used as threshold [32]. Therefore, the selected features (i.e. those that 
were relevant and non-redundant) a number of times equal or higher 
than the average significance constituted the optimal subset [32]. 

3.4. Apnea-hypopnea index estimation 

AHI has been estimated by means of a MLP [46]. MLP uses the 
well-known backpropagation supervised learning technique for training 
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and allows to distinguish data that is non-linearly separable [47,48]. 
MLP usually consists of three perceptron layers (input, hidden, and 
output), where each perceptron is connected with a certain weight to all 
the perceptrons of the next layer [46]. The number of perceptrons of the 
input layer is equal to the number of features that feed the network, 
while the number of perceptrons NH of the hidden layer is a parameter to 
be tuned [46]. In our study, the output layer is formed by a single linear 
unit that estimates the AHI. 

Weights were randomly initialized and then optimized by means of 
scaled conjugate gradient and weight decay [46]. The latter introduces a 
regularization parameter, α, to deal with overfitting [46]. Like NH, α also 
requires to be tuned. In our study, both parameters were optimized by 
applying leave-one-out cross-validation (loo-cv) in the training group 
and computing the Cohen’s kappa (k) for each NH/α pair [12,31]. 

3.5. Statistical analysis 

Bispectral features did not show normal distribution when Lilliefors 
test was applied. Hence, the non-parametric Kruskal-Wallis test was 
used to search for statistical significant differences (p-value < 0.01) 
among the four severity groups (no-OSA, mild, moderate, and severe 
OSA). Moreover, the Mann-Whitney U test was used as post-hoc test for 
pairwise comparison between severity groups, applying the Bonferroni 
correction for multiple comparisons. In order to visualize these differ-
ences, as well as to analyze the distribution and tendencies of the bis-
pectral features, violin plots were also obtained. Violin plots showed the 
data distribution of each extracted feature (black region), as well as the 

first quartile (lower red line), the median (middle red line), and the third 
quartile (upper red line) of the distribution. The agreement between the 
predicted and actual diagnosis was assessed using the four-class accu-
racy (Acc4) and k [49]. The intra-class correlation coefficient (ICC) was 
also used to measure the agreement between the AHI estimated by the 
proposed models and the actual AHI from PSG. The metrics used to 
assess the diagnostic performance of the MLP were as follows: sensitivity 
(Se), specificity (Sp), accuracy (Acc), area under receiver-operating 
characteristic curve (AUC), and positive (LR+) and negative (LR-) 
likelihood ratios. 

4. Results 

4.1. Training set 

4.1.1. Descriptive analysis 
Fig. 2 shows the averaged normalized bispectrum by severity groups. 

Fig. 3 displays the averaged adaptive bispectral band by severity groups 
in 3D. As can be seen, the bispectral information is distributed over a 
wider range of frequency components as the OSA severity degree in-
creases. In the no-OSA group, the contour lines are more concentrated in 
the normal breathing band (yellow region at 0.20 Hz–0.40 Hz in Fig. 2). 
It is in this region where the no-OSA group presents higher averaged 
bispectral amplitude than the rest of the groups (0.017 Hz-1 according to 
Fig. 3a). However, the amplitude decreases in the normal breathing 
band and is distributed in a range of lower frequencies (yellow region 
around 0.05 Hz in Fig. 2) as the severity increases. Therefore, the 

Fig. 2. Contour of the averaged normalized bispectrum of the groups (a) no-OSA, (b) mild OSA, (c) moderate OSA, and (d) severe OSA in the training set.  
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subjects with greater severity show lower amplitude in the common 
respiration band while reaching higher amplitude (≥2⋅10− 3 Hz− 1), and 
thus greater phase coupling, in a new frequency region around 0.05 Hz. 

Fig. 4 shows the violin plots of the 13 bispectral features extracted 
from the adaptive band and ODI3 of the 4 OSA severity groups in the 
training set. It can be observed that the features based on amplitude Bmax 
and Btotal experienced a decreasing tendency and different distribution 
as AHI increases. In contrast, Bmin did not show a clear tendency or 
distribution differences between severity groups. BE1, BE2, BE3, and PE 
showed similar distributions to each other and an increasing tendency 
with the rise of AHI. This tendency was clearer in BE1. The features 
based on moments (H1, H2, H3, and H4) presented similar distributions, 
as well as a decreasing tendency as the severity of OSA increases. 
Regarding the WCOB-based features, fm1 and fm2 showed different 
distribution to each other and among severity groups. While fm1 expe-
rienced a slight increasing tendency, it was decreasing for fm2. It can also 
be noted that ODI3 presented an increasing tendency with the increase 
of OSA severity. However, it did not show distribution differences be-
tween severity groups. 

Of the 13 extracted bispectral features, all except Bmin and fm1 
showed statistically significant differences (p-value < 0.01) among the 4 
OSA severity groups when the Kruskal-Wallis test was applied. With the 
Mann-Whitney U test, no differences were found between the no-OSA 
and mild OSA group in any bispectral feature. However, all the fea-
tures but Bmin and fm1, reflected differences between the severe OSA 
group and the other groups. Statistically significant differences in Bmax, 
Btotal, H2, and H4 were also found between the no-OSA and moderate 
OSA group, and only Btotal showed differences between the mild OSA and 
moderate OSA group. Regarding ODI3, it presented statistically 

significant differences in all comparisons between OSA severity groups. 

4.1.2. Features selected by FCBF 
Fig. 5 displays the histograms of the number of times each feature 

was selected using FCBF in 1000 bootstrap replicates from the training 
set. Results of feature selection without ODI3 are shown in Fig. 5a. In this 
case, 4 bispectral features were selected as relevant and non-redundant 
more times than the average significance: Bmin, BE1, H2, and fm2. 
Moreover, results of feature selection with ODI3 are shown in Fig. 5b. It 
can be seen that BE1, H2, fm2, and ODI3 formed the optimal feature 
subset. 

Fig. 6 shows the heat map of the SU between each pair of features xi 
and xj (SU(xi|xj)). Each region of this map was computed as the median 
of the SU(xi|xj) obtained in the 1000 bootstrap replicates. As can be 
observed, SU(xi|xj) values vary between 0 and 1 according to the 
redundancy degree, where a SU(xi|xj) = 1 means that one feature is 
completely predictable from the other and a SU(xi|xj) = 0 indicates that 
the two features are independent. In this regard, high SU(xi|xj) was 
presented between the bispectral features from the same approach: 
features based on bispectral entropies, moments, and WCOB. The fea-
tures based on amplitude Bmax and Btotal also showed high SU(xi|xj) with 
each other, as well as with features from other bispectral approaches 
(Bmax with bispectral entropies and Btotal with features based on mo-
ments). In contrast, the SU(xi|xj) of Bmin, PE, and ODI3 with the rest of 
features was lower. 

4.1.3. Optimization and training of MLP 
We trained a MLP model for each of the 2 optimal subsets that were 

obtained in the selection stage: MLPAF (MLP input: Bmin, BE1, H2, and 

Fig. 3. Contour 3D of the averaged bispectral adaptive band of the groups (a) no-OSA, (b) mild OSA, (c) moderate OSA, and (d) severe OSA in the training set.  
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fm2) and MLPAF,ODI3 (MLP input: BE1, H2, fm2, and ODI3). In order to 
optimize NH and α, we varied their values from 1 to 40 and from 1 to 20 
in steps of 1, respectively. For each NH/α pair, k was obtained through a 
loo-cv procedure in the training group. The maximum value of k 
determined the optimal values of NH and α in each case. Thereby, the 
optimal values of MLPAF were NH = 39 and α = 7, while the optimal 
values of MLPAF,ODI3 were NH = 2 and α = 8. Finally, MLPAF and MLPAF, 

ODI3 networks, configured with the optimized parameters, were trained 
with the entire training group to complete the learning process. 

4.2. Test set 

The trained MLPAF, MLPAF,ODI3 networks, as well as single ODI3 were 
assessed using the test group. In this way, the 3 models were applied to 
1000 bootstrap replicates derived from the test group while the per-
formance metrics were obtained for each replicate using the bootstrap 
0.632 procedure [45]. The median and the 95% confidence interval of 
all performance metrics were computed. Statistical differences between 
each pair of models were assessed using the Mann-Whitney U test with 

Fig. 4. Violin plots of the 13 bispectral features and ODI3 extracted from the groups no-OSA (G1), mild OSA (G2), moderate OSA (G3), and severe OSA (G4) in the 
training set. 

Fig. 5. Results of feature selection with the training set using Fast Correlation-Based Filter in 1000 bootstrap: (a) bispectral features from AF and (b) bispectral 
features from AF and ODI3. 
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the Bonferroni correction. The evaluation results are shown in Table 2 
and Table 3. 

Despite the moderate diagnostic performance obtained by MLPAF, it 
significantly outperformed ODI3 (p-value < 0.001) in Se for 1 and 5 
events/h, and in Acc for 1 event/h. It can be seen that MLPAF over-
estimates the OSA severity degree in 1 and 5 events/h, while ODI3 un-
derestimates it. However, this effect is reduced when the 2 approaches 
(bispectral features from AF and ODI3) are combined in MLPAF,ODI3, thus 
reflecting the complementarity of both approaches. This model achieved 
significantly higher diagnostic accuracy (p-value < 0.001) than the 2 
approaches separately for the 3 cut-off points. It is also noticeable the 
value of LR+ = 15.01 [11.82–30.73] achieved by MLPAF,ODI3 for 10 
events/h. Regarding the global performance measures (Table 3), the 
MLPAF,ODI3 also significantly outperformed MLPAF and single ODI3 (p- 
value < 0.001) in terms of k and Acc4. 

5. Discussion 

In this study, we characterized the non-gaussianity, non-linearity, 
and irregularity of AF signal through bispectrum, and extracted previ-
ously uncovered features in the childhood OSA context. Moreover, our 
study highlighted the complementarity among the 4 bispectral ap-
proaches applied to AF, as well as the complementarity between the 
bispectral information from AF and the commonly employed index 
ODI3. Finally, we evaluated its performance to diagnose OSA in chil-
dren. These computational findings allowed for development of a MLP 
model with high diagnostic accuracy whenever using any of the com-
mon clinical cut-offs for OSA severity, namely 1, 5, and 10 events/h 
(82.16% [79.83–84.44], 82.49% [80.08–84.77], and 90.15% 
[88.39–92.00], respectively) by combining bispectral features from AF 
and ODI3. The interpretation of these novel results is detailed below. 

Fig. 6. Heat map of the symmetric uncertainty between the extracted features. A version with the 95% confidence intervals is included in the supplemen-
tary material. 

Table 2 
Diagnostic performance of MLPAF and MLPAF,ODI3 models, and ODI3 in the test set for the AHI cut-offs 1, 5, and 10 events/h.  

AHI cut-off Model Se (%) [95%CI] Sp (%) [95%CI] Acc (%) [95%CI] AUC [95%CI] LR+ [95%CI] LR- [95%CI] 

1 event/h MLPAF 94.07a,b [92.44,95.57] 11.16a,b [6.65,15.70] 78.14a,b [75.67,80.61] 0.72a,b [0.68,0.76] 1.06a,b [1.01,1.13] 0.58a,b [0.40,1.91] 
MLPAF,ODI3 98.03a,c [97.07,98.93] 15.27a,c [9.90,20.48] 82.16a,c [79.83,84.44] 0.82a,c [0.79,0.84] 1.16a,c [1.09,1.25] 0.14a,c [0.07,0.39] 
ODI3 59.78b,c [56.66,63.32] 86.06b,c [80.83,90.79] 64.81b,c [61.89,67.97] 0.82b,c [0.79,0.85] 4.59b,c [3.52,10.83] 0.47b,c [0.42,0.52] 

5 events/h MLPAF 78.66a,b [74.56,83.18] 50.61a,b [46.95,54.65] 61.20a,b [58.17,64.21] 0.72a,b [0.68,0.75] 1.60a,b [1.47,1.78] 0.42a,b [0.33,0.52] 
MLPAF,ODI3 81.56a,c [77.58,85.73] 83.00a,c [79.95,85.92] 82.49a,c [80.08,84.77] 0.88a [0.86,0.91] 4.85a,c [4.20,6.37] 0.22a,c [0.17,0.27] 
ODI3 69.45b,c [64.63,74.16] 89.38b,c [86.91,91.68] 81.88b,c [79.54,84.25] 0.88b [0.86,0.90] 6.68b,c [5.60,10.17] 0.34b,c [0.29,0.40] 

10 event/h MLPAF 55.85a,b [49.64,62.78] 83.16a,b [80.56,85.64] 77.35a,b [74.74,79.96] 0.76a,b [0.72,0.79] 3.36a,b [2.80,4.30] 0.53a,b [0.45,0.61] 
MLPAF,ODI3 72.29a,c [66.28,78.12] 94.98a,c [93.48,96.42] 90.15a,c [88.39,92.00] 0.93a,c [0.91,0.95] 15.01a,c [11.82,30.73] 0.29a,c [0.23,0.35] 
ODI3 81.05b,c [75.71,86.12] 88.58b,c [86.34,90.76] 87.00b,c [84.93,89.06] 0.92b,c [0.90,0.94] 7.23b,c [6.10,9.98] 0.21b,c [0.16,0.27] 

AHI = apnea-hypopnea index, Se = sensitivity, Sp = specificity, Acc = accuracy, AUC = area under receiver-operating characteristic curve, LR+ = positive likelihood 
ratio, LR- = negative likelihood ratio, 95%CI = 95% confidence interval, ODI3 = 3% oxygen desaturation index, MLPAF = Multi-Layer perceptron neural network 
whose inputs are Bmin, BE1, H2, and fm2 (minimum amplitude, bispectral entropy of first order, sum of logarithmic amplitudes of diagonal elements of bispectrum, and 
coordinate y of the weighted center of bispectrum, respectively), MLPAF,ODI3 

= Multi-Layer perceptron neural network whose inputs are BE1, H2, and fm2, and ODI3, a 

Significant differences (p-value < 0.001) between MLPAF and MLPAF,ODI3 using Mann-Whitney U test with Bonferroni correction, b Significant differences (p-value <
0.001) between MLPAF and ODI3 using Mann-Whitney U test with Bonferroni correction, c Significant differences (p-value < 0.001) between MLPAF,ODI3 and ODI3 using 
Mann-Whitney U test with Bonferroni correction. 
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5.1. Selected features 

The averaged normalized bispectrum (Fig. 2) reflected the degree of 
phase coupling between different frequency components. In this regard, 
it was observed that the subjects without OSA presented a strong 
coupling in the normal respiration frequency range (0.20 Hz–0.40 Hz). 
However, the subjects with OSA showed a redistribution of the bispec-
tral power, with a decrease of amplitude and coupling in their adaptive 
band (Fig. 3). This decrease suggest that apneic events reduce the non- 
gaussianity and the non-linearity of AF signal [26]. 

These changes of amplitude and coupling were also quantified by 
means of the extracted bispectral features. In this regard, FCBF revealed 
the relevance and complementarity of Bmin, BE1, H2, and fm2, as well as 
the redundancy of the remaining extracted information (Fig. 5a and 
Fig. 6). Since the bispectrum from AF is normalized, minimum ampli-
tude (Bmin) allowed to estimate the minimum coupling generated within 
the adaptive band. Although this feature did not show statistical dif-
ferences between the OSA severity groups (Fig. 4), it provides comple-
mentary information focused on strength of minimum coupling instead 
of irregularity or coupling focus localization of AF. 

Moreover, bispectral entropy of first order (BE1) showed an 
increasing tendency as AHI was higher (Fig. 4), which implies an in-
crease of irregularity in the amplitude of AF signal [12,26]. Hence, this 
increase suggests that apneic events generate a loss in the synchroni-
zation of the respiratory rhythm, causing AF to abruptly change its 
amplitude without following a determined pattern [29]. 

Regarding the sum of logarithmic amplitudes of diagonal elements of 
the bispectral band (H2), it experienced a decreasing tendency as OSA 
severity degree increased (Fig. 4). Since the frequency components of 
the diagonal are f1 = f2, this feature provides information about the 
phase coupling between the harmonic components of AF, such that f3 =

2⋅f1 and ɸ3 = 2⋅ɸ1 [29,34]. Therefore, its decreasing tendency would 
indicate less non-linear interaction between the AF harmonic compo-
nents of subjects with OSA. This fact suggests that the occurrence of 
apneic events generates less periodic and more random harmonic 
components in the AF signal [29,34]. 

In addition, fm2 revealed that OSA introduces changes in the location 
of the focus of bispectral band coupling. In this regard, the less severe 
groups presented the coordinate y of their weighted centers (fm2) more 
concentrated within the central region of the bispectral band (Fig. 4). 
The decreasing tendency of this feature suggests that apneas and 
hypopneas displace the coupling focus, generating more activity in the 
low frequency components of the adaptive band [42]. 

According to Fig. 6, it was observed that bispectral features from the 
same approach (features based on amplitude, entropies, moments, and 
WCOB) share a large amount of information with each other (high SU(xi| 
xj)). This supported the fact that FCBF only selected one feature from 

each of the 4 bispectral approaches (Fig. 5a), hence highlighting the 
existing complementarity among them. When ODI3 was included in the 
process, it was selected along with BE1, H2, and fm2 (Fig. 5b). This fact 
revealed that the information provided by bispectrum about the irreg-
ularity, non-linearity, and coupling focus from AF is consistent and 
complementary to that provided by ODI3. 

5.2. Diagnostic performance 

The complementarity between the bispectral information from AF 
and ODI3 was also reflected in the MLP models used to estimate the AHI. 
The MLPAF,ODI3 model showed a statistically significant higher perfor-
mance (p-value < 0.001) in terms of Se, Acc, and LR- for 1 and 5 events/ 
h, in Sp, Acc, AUC, and LR+ for 10 events/h, as well as in k and Acc4. 
MLPAF,ODI3 obtained higher performance than MLPAF and ODI3 in the 
global measures k and Acc4, revealing that the agreement between the 
predicted and actual severity is greater when both approaches are jointly 
used. In this regard, MLPAF showed an overestimation of OSA (low Sp 
values) in 1 and 5 events/h, while ODI3 showed an underestimation 
(low Se values) in these cut-off points. In contrast, the combination of 
both approaches in MLPAF,ODI3 reduced this effect in 5 events/h. 
Although MLPAF,ODI3 obtained an unbalanced Se-Sp pair in 1 event/h, 
this model achieved high performance in the global diagnostic mea-
surement (AUC = 0.82 [0.79–0.84]). 

Moreover, the complementarity of both approaches could also be 
observed in the diagnostic accuracy. While MLPAF and ODI3 reached 
moderate diagnostic accuracies in 1, 5, and 10 events/h, MLPAF,ODI3 

achieved statistically significant higher accuracy (p-value < 0.001) in 
these 3 cut-off points (82.16% [79.83–84.44], 82.49% [80.08–84.77], 
and 90.15% [88.39–92.00], respectively), improving those individually 
obtained by each of the approaches. In addition, it is also remarkable the 
significant increase in LR+ (p-value < 0.001) reached by MLPAF,ODI3 for 
10 events/h (LR+= 15.01 [11.82–30.73]). Due to a LR+≥ 10 is a robust 
indicator to confirm the presence of a disease [50], this model could be 
applied to early detect severe OSA cases. Accordingly, our proposal 
could be very useful to simplify the pediatric OSA diagnosis, particularly 
for those children with moderate-to-severe OSA. These subjects have an 
increased risk of developing neurocognitive and cardiovascular comor-
bidities [1,2,30]. Thus, our proposal would not only serve to streamline 
long waiting lists, but also to quickly diagnose children before the 
adverse consequences of OSA continue progressing and potentially 
become irreversible. Moreover, it could help to reduce the complexity 
and intrusiveness of pediatric OSA diagnostic tests, such as PSG and 
HRP. 

5.3. Comparison with other studies 

Table 4 summarizes the results achieved in previous studies focused 
on OSA detection in children [8,9,12–14,31,43,51–53]. Several of these 
studies evaluated their methodologies involving a low-to-moderate 
number of pediatric subjects (whole dataset ranging from 21 to 298 
children, with test set ranging from 21 to 207 subjects) [8,9,12,51–53]. 
These studies reported Acc ranging from 75.00% to 84.00% and AUC 
ranging from 0.80 to 0.86 for 1 event/h, 71.00% to 85.10% Acc and 0.78 
to 0.91 AUC for 5 events/h, and 85.33% to 89.00% Acc and 0.92 to 0.94 
AUC for 10 events/h. Our proposal was designed and assessed using 946 
children (376 subjects in the test set) and achieved performances close to 
the maximum values of these ranges, including the maximum Acc value 
for 10 events/h. 

Other studies have already assessed their approaches with larger 
number of subjects (whole dataset ranging from 432 to 4191 children, 
with test set ranging from 251 to 3602 individuals) [14,15,31,43]. These 
studies achieved a high diagnostic performance for 1, 5, and 10 
events/h. However, our methodology obtained higher diagnostic accu-
racy in 1 and 5 events/h, similar Acc in 10 events/h (90.26%), as well as 
higher AUC in the 3 cut-off points. 

Table 3 
Global performance of MLPAF and MLPAF,ODI3 models, and ODI3 in the test set.  

Model k [95%CI] ICC [95%CI] Acc4(%) [95%CI] 

MLPAF 0.14 [0.11,0.18]a,b 0.52 [0.41,0.59]a,b 37.08 [34.17,40.15]a,b 

MLPAF,ODI3 0.38 [0.34,0.42]a,c 0.88 [0.81,0.91]a 57.94 [55.02,61.09]a,c 

ODI3 0.29 [0.26,0.33]b,c 0.88 [0.82,0.90]b 46.21 [43.39,49.60]b,c 

k = Cohen’s kappa, ICC = intra-class correlation coefficient, Acc4 = four-class 
accuracy, 95%CI = 95% confidence interval, ODI3 = 3% oxygen desaturation 
index, MLPAF = Multi-Layer perceptron neural network whose inputs are Bmin, 
BE1, H2, and fm2 (minimum amplitude, bispectral entropy of first order, sum of 
logarithmic amplitudes of diagonal elements of bispectrum, and coordinate y of 
the weighted center of bispectrum, respectively), MLPAF,ODI3 = Multi-Layer 
perceptron neural network whose inputs are BE1, H2, and fm2, and ODI3. a 

Significant differences (p-value < 0.001) between MLPAF and MLPAF,ODI3 using 
Mann-Whitney U test with Bonferroni correction, b Significant differences (p- 
value < 0.001) between MLPAF and ODI3 using Mann-Whitney U test with 
Bonferroni correction, c Significant differences (p-value < 0.001) between 
MLPAF,ODI3 and ODI3 using Mann-Whitney U test with Bonferroni correction. 
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Table 4 
Diagnostic performance of state-of-the-art approaches in the childhood OSA context.  

Study Nº Subjects (Total dataset/Test set) Signal Methods (Analysis/Selection/Classification) AHI cut-off (events/h) Se (%) Sp (%) Acc (%) AUC 

Shouldice et al. (2004) [8] 50/25 ECG Temporal and spectral analysis/-/QDA 1 85.70 81.80 84.00 0.83 
Gil et al. (2010) [9] 21/21 PPG Analysis of HRV, PTTV, and DAP events/Wrap method/LDA 5 75.00 85.70 80.00 – 

Tsai et al. (2013) [52] 148/148 SpO2 ODI4/− /−
1 77.70 88.90 79.00* 0.86 
5 83.80 86.50 85.10* 0.91 
10 89.10 86.00 87.10* 0.94 

Dehkordi et al. (2016) [51] 146/146 PPG Temporal, spectral, and detrended fluctuation analysis/LASSO/LASSO 5 76.00 68.00 71.00 0.78 

Hornero et al. (2017) [31] 4191/3602 SpO2 Statistical, spectral, non-linear analysis, and ODI3/FCBF/MLP 
1 84.02 53.19 75.15 0.79 
5 68.16 87.19 81.65 0.85 
10 68.66 94.07 90.17 0.91 

Barroso-García et al. (2017) [14] 501/251 AF Spectral entropies and central tendency measure/FSLR/LR 
1 60.50 58.60 60.00 0.59 
5 65.00 80.60 76.00 0.78 
10 83.30 79.00 80.00 0.80 

Vaquerizo-Villar et al. (2018) [12] 298/75 SpO2 Anthropometric variables, 
ODI3, spectral and bispectral analysis/FCBF/MLP 

5 61.76 97.56 81.33 – 
10 60.00 94.54 85.33 – 

Xu et al. (2019) [43] 432/432 SpO2 
ODI3 and 3rd statistical moment of the spectral band 
of interest/FCBF/MLP 

1 95.34 19.10 79.63 0.78 
5 77.78 80.46 79.40 0.87 
10 73.53 92.73 88.19 0.90 

Garde et al. (2019) [53] 207/207 SpO2 

PRV 
Temporal and spectral analysis/Stepwise-selection/LR 

1 80.00 65.00 75.00 0.80 
5 85.00 79.00 82.00 0.89 
10 82.00 91.00 89.00 0.92 

Barroso-García et al. (2020) [13] 946/376 
AF 
ODI3 Recurrence quantification analysis and ODI3/FCBF/BY-MLP 

1 97.70 22.22 83.24 0.81 
5 78.72 78.30 78.46 0.88 
10 78.75 94.26 90.96 0.93 

Jiménez-García et al. (2020) [15] 974/390 AF 
SpO2 

Statistical, non-linear, spectral analysis, and ODI3/FCBF/Multiclass AdaBoost 
1 92.06 36.00 81.28 – 
5 76.03 85.66 82.05 – 
10 62.65 97.72 90.26 – 

This study 946/376 
AF 
ODI3 Bispectral analysis and ODI3/FCBF/MLP 

1 98.03 15.27 82.16 0.82 
5 81.56 83.00 82.49 0.88 
10 72.29 94.98 90.15 0.93 

QDA = Quadratic discriminant analysis, HRV = Heart rate variability, PTTV = Pulse transit time variability, DAP = Decreases in amplitude fluctuations of the PPG signal, LDA = Linear discriminant analysis, ODI4 = 4% 
oxygen desaturation index, LASSO = Least absolute shrinkage and selection operator, ODI3 = 3% oxygen desaturation index, FCBF = Fast correlation based filter, MLP = Multi-Layer perceptron neural network, FSLR =
Forward stepwise logistic regression, LR = Logistic regression model, PRV = Pulse rate variability, BY-MLP = Multi-Layer perceptron neural network with Bayesian approach. *Computed from reported data. 
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A previous study from our research group analyzed the AF signal in 
the pediatric OSA context using recurrence plots (RPs) [13]. Beyond the 
further characterization obtained by means of bispectrum, we have been 
able to notably improve the reported diagnostic performance for 5 
events/h. As moderately to severely affected children have an increased 
risk of developing comorbidities [1,2,30], this improvement impacts on 
those children who benefit the most from an early diagnosis and a timely 
treatment. Moreover, adenotonsillectomy is commonly recommended 
when pediatric subjects present an AHI ≥ 5 events/h [1,2]. Thus, bis-
pectrum could be more useful than RPs to diagnose these cases on time. 
In addition to the improvement in 5 events/h, our current proposal 
obtained a slightly lower performance to discard OSA (LR- = 0.14 vs. 
LR- = 0.10 for 1 event/h) and a higher performance to confirm the 
presence of severe OSA (LR+ = 15.01 vs. LR+ = 13.71 for 10 events/h) 
than the method based on RPs. Thereby, bispectrum would be a more 
robust method detecting cases of pediatric severe OSA. It should also be 
noted that the bispectral analysis has revealed behaviors of AF, such as 
changes of gaussianity and linearity, that could not have been detected 
by means of RPs. Another study from our group analyzed the bispectrum 
from SpO2 signal along with ODI3, anthropometric, and spectral features 
to classify children in 3 OSA severity groups [12]. However, our AHI 
estimation using the bispectral information from AF and ODI3 out-
performed its results. Hence, our proposal has shown a high diagnostic 
performance compared to other state-of-the-art studies. 

5.4. Limitations 

Several limitations of our study need to be pointed out. The database 
used in this study was formed by 946 pediatric subjects. Although this 
sample is large, it would be desirable that the size of the severity groups 
had been more balanced. However, the proportion of subjects is similar 
to that reflected by other state-of-the-art studies in the context of 
detection of pediatric OSA [31,43,52,53]. In addition, although some 
studies indicate that respiratory rate varies with age, there is no 
consensus on which their reference ranges are [37]. Regarding bispec-
tral bandwidth, we used a width of 0.15 Hz, like some studies based on 
spectral analysis that involved the respiratory rate of children [38,39]. 
However, different frequency ranges of the bispectrum could be 
analyzed in future studies, and even bandwidth could also be considered 
an adaptive factor. Moreover, AHI could be estimated using other 
techniques, such as ensemble-learning methods, or multiclass classifiers, 
and the results obtained with each of them could be compared in future 
research. 

6. Conclusion 

As far as we know, this is the first time that bispectrum is used to 
characterize AF in the pediatric OSA context. We found that the occur-
rence of apneic events decreases the non-gaussianity and the non-linear 
interaction of the harmonic components of AF signal, as well as the 
regularity of the respiratory patterns. Another contribution of this study 
is the use of a bispectral band adapted to the physiological conditions of 
each subject. Our results revealed that the different approaches of bis-
pectral features extracted from this band (features based on amplitude, 
entropies, moments, and WCOB) provide complementary information to 
characterize AF in children. In addition, we found that the bispectrum 
from AF provides complementary information to ODI3, improving the 
performance individually achieved by each of these approaches. 
Therefore, the MLP model fed with bispectral features and ODI3 reached 
high diagnostic performance in discriminating moderately to severely 
affected children. These results lead us to conclude that the information 
provided by bispectrum is able to characterize pediatric OSA from AF 
signals. Thus, bispectral information from AF and ODI3 could be jointly 

used as a simplified methodology to improve the automated OSA diag-
nosis in children. 
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F. Vaquerizo-Villar, P. Núñez, F. del Campo, D. Gozal, R. Hornero, Usefulness of 
recurrence plots from airflow recordings to aid in paediatric sleep apnoea 
diagnosis, Comput. Methods Progr. Biomed. 183 (2020), https://doi.org/10.1016/ 
j.cmpb.2019.105083, 105083. 

[14] V. Barroso-García, G. Gutiérrez-Tobal, L. Kheirandish-Gozal, D. Álvarez, 
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A. Martín-Montero, D. Álvarez, F. del Campo, D. Gozal, R. Hornero, Assessment of 
airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome 
using AdaBoost, Entropy 22 (2020) 670, https://doi.org/10.3390/e22060670. 

[16] N.A. Collop, W.M.D. Anderson, B. Boehlecke, D. Claman, R. Goldberg, D. 
J. Gottlieb, D. Hudgel, M. Sateia, R. Schwab, Clinical guidelines for the use of 
unattended portable monitors in the diagnosis of obstructive sleep apnea in adult 
patients, J. Clin. Sleep Med. 3 (2007) 737–747, https://doi.org/10.5664/ 
jcsm.27032. 

[17] F. Stehling, J. Keull, M. Olivier, J. Große-Onnebrink, U. Mellies, B.A. Stuck, 
Validation of the screening tool ApneaLink® in comparison to polysomnography 
for the diagnosis of sleep-disordered breathing in children and adolescents, Sleep 
Med. 37 (2017) 13–18, https://doi.org/10.1016/j.sleep.2017.05.018. 
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